On the evaluation of the alternating multiple $$ t $$ value $$ t({\overline{1}},\ldots ,{\overline{1}}, 1, {\overline{1}},\ldots ,{\overline{1}}) $$
From MaRDI portal
Publication:6500199
DOI10.1007/S11139-023-00788-0MaRDI QIDQ6500199
Publication date: 10 May 2024
Published in: The Ramanujan Journal (Search for Journal in Brave)
Generalized hypergeometric series, ({}_pF_q) (33C20) Multiple Dirichlet series and zeta functions and multizeta values (11M32)
Cites Work
- Unnamed Item
- Mixed Tate motives over \(\mathbb{Z}\)
- Evaluation of the multiple zeta values \(\zeta(2,\ldots,2,3,2,\ldots,2)\)
- Multiple harmonic series
- An odd variant of multiple zeta values
- Another proof of Zagier's evaluation formula of the multiple zeta values \(\zeta (2, \dots , 2, 3, 2, \dots , 2)\)
- Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops
- Asymptotic Formulas for Zero-Balanced Hypergeometric Series
- Derivation and double shuffle relations for multiple zeta values
This page was built for publication: On the evaluation of the alternating multiple $$ t $$ value $$ t({\overline{1}},\ldots ,{\overline{1}}, 1, {\overline{1}},\ldots ,{\overline{1}}) $$