Fast Exact Leverage Score Sampling from Khatri-Rao Products with Applications to Tensor Decomposition
From MaRDI portal
Publication:6508609
arXiv2301.12584MaRDI QIDQ6508609
Aydin Buluç, Riley Murray, V. Bharadwaj, Laura Grigori, Osman Asif Malik, James Demmel
Abstract: We present a data structure to randomly sample rows from the Khatri-Rao product of several matrices according to the exact distribution of its leverage scores. Our proposed sampler draws each row in time logarithmic in the height of the Khatri-Rao product and quadratic in its column count, with persistent space overhead at most the size of the input matrices. As a result, it tractably draws samples even when the matrices forming the Khatri-Rao product have tens of millions of rows each. When used to sketch the linear least-squares problems arising in Candecomp / PARAFAC decomposition, our method achieves lower asymptotic complexity per solve than recent state-of-the-art methods. Experiments on billion-scale sparse tensors and synthetic data validate our theoretical claims, with our algorithm achieving higher accuracy than competing methods as the decomposition rank grows.
Has companion code repository: https://github.com/vbharadwaj-bk/fast_tensor_leverage
This page was built for publication: Fast Exact Leverage Score Sampling from Khatri-Rao Products with Applications to Tensor Decomposition
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6508609)