Jeśmanowicz' conjecture on exponential Diophantine equations
From MaRDI portal
Publication:651798
DOI10.7169/FACM/1323705814zbMath1266.11064OpenAlexW1985405758WikidataQ122979622 ScholiaQ122979622MaRDI QIDQ651798
Publication date: 19 December 2011
Published in: Functiones et Approximatio. Commentarii Mathematici (Search for Journal in Brave)
Full work available at URL: https://projecteuclid.org/euclid.facm/1323705814
Exponential Diophantine equations (11D61) Higher degree equations; Fermat's equation (11D41) Linear forms in logarithms; Baker's method (11J86)
Related Items (9)
On the exceptional solutions of Jeśmanowicz' conjecture ⋮ Generalizations of classical results on Jeśmanowicz' conjecture concerning Pythagorean triples ⋮ Generalizations of classical results on Jeśmanowicz' conjecture concerning Pythagorean triples. II ⋮ On Jeśmanowicz' conjecture concerning primitive Pythagorean triples ⋮ The exponential Diophantine equation \(\left(4 m^2 + 1\right)^x + \left(5 m^2 - 1\right)^y = (3 m)^z\) ⋮ On Jeśmanowicz' conjecture concerning primitive Pythagorean triples. II ⋮ Jeśmanowicz' conjecture for polynomials ⋮ The Diophantine equation (m2 + n2)x + (2mn)y = (m + n)2z ⋮ JEŚMANOWICZ’ CONJECTURE ON PYTHAGOREAN TRIPLES
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the equations \(p^x - b^y = c\) and \(a^x + b^y = c^z\)
- On a conjecture on Pythagorean numbers
- On a conjecture on Pythagorean numbers. II
- On a conjecture on Pythagorean numbers. III
- On \(p^x-q^y=c\) and related three term exponential Diophantine equations with prime bases.
- A remark on Jeśmanowicz' conjecture
- On Jeśmanowicz' conjecture concerning Pythagorean numbers
- Linear forms in two logarithms and interpolation determinants
- The Diophantine equation \(Ax^ p+By^ q=Cz^ r\).
- A note on Jeśmanowicz' conjecture concerning primitive Pythagorean triplets
- ON THE CONJECTURE OF JEŚMANOWICZ CONCERNING PYTHAGOREAN TRIPLES
- On the conjecture of Jesmanowicz concerning Pythagorean triples
- Some diophantine equations of the form $x^n + y^n = z^m$
- A corollary to a theorem of Laurent-Mignotte-Nesterenko
- A note on Jeśmanowicz' conjecture concerning Pythagorean triples
- An application of a lower bound for linear forms in two logarithms to the Terai–Jeśmanowicz conjecture
- Chabauty methods using elliptic curves
- Ternary Diophantine Equations via Galois Representations and Modular Forms
- A note on a conjecture of Jeśmanowicz
- Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations
- A note on the Diophantine equation $a^x + b^y = c^z$
- A complete solution to X2 + Y3 + Z5 = 0
- On the Equations zm = F (x, y ) and Axp + Byq = Czr
This page was built for publication: Jeśmanowicz' conjecture on exponential Diophantine equations