Inequalities for fractional integral operators on different metric measure spaces.
From MaRDI portal
Publication:651822
DOI10.5802/AMBP.300zbMath1234.26017OpenAlexW2315559377MaRDI QIDQ651822
Publication date: 19 December 2011
Published in: Annales Mathématiques Blaise Pascal (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/219832
Hardy-Littlewood-Sobolev inequalityfractional integral operatorHedberg inequalitymeasurable metric space
Function spaces arising in harmonic analysis (42B35) Fractional derivatives and integrals (26A33) Inequalities involving derivatives and differential and integral operators (26D10)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Weighted norm inequalities for operators of potential type and fractional maximal functions
- Lectures on analysis on metric spaces
- Analyse harmonique non-commutative sur certains espaces homogènes. Etude de certaines intégrales singulières. (Non-commutative harmonic analysis on certain homogeneous spaces. Study of certain singular integrals.)
- On the $L^p$ boundedness of the non-centered Gaussian Hardy-Littlewood maximal function
- 𝐴_{𝑝} weights for nondoubling measures in 𝑅ⁿ and applications
- Inégalités à poids pour l'opérateur de Hardy–Littlewood–Sobolev dans les espaces métriques mesurés à deux demi-dimensions
- Singular integrals on generalized Lipschitz and Hardy spaces
- Weighted Inequalities for Fractional Integrals on Euclidean and Homogeneous Spaces
- Sobolev met Poincaré
- Two-weight norm inequalities for maximal operators and fractional integrals on non-homogenous spaces
- The sharp Riesz potential estimates in metric spaces
- On Certain Convolution Inequalities
- Boundedness properties of fractional integral operators associated to non-doubling measures
This page was built for publication: Inequalities for fractional integral operators on different metric measure spaces.