Transcendental values of class group \(L\)-functions
From MaRDI portal
Publication:652251
DOI10.1007/s00208-010-0619-yzbMath1281.11071OpenAlexW4240117016MaRDI QIDQ652251
Publication date: 14 December 2011
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00208-010-0619-y
Real zeros of (L(s, chi)); results on (L(1, chi)) (11M20) Zeta functions and (L)-functions of number fields (11R42) Transcendence (general theory) (11J81) Other analytic theory (11R47) Linear forms in logarithms; Baker's method (11J86)
Related Items
TRANSCENDENTAL SUMS RELATED TO THE ZEROS OF ZETA FUNCTIONS ⋮ Algebraic independence of values of Goss \(L\)-functions at \(s=1\) ⋮ On the nature of \(e^{\gamma}\) and non-vanishing of derivatives of \(L\)-series at \(s=1/2\) ⋮ Transcendental numbers and special values of Dirichlet series ⋮ Kronecker's solution of Pell's equation for CM fields ⋮ An elliptic analogue of a theorem of Hecke ⋮ Distribution and non-vanishing of special values of L-series attached to Erdős functions ⋮ Transcendental values of class group $L$-functions, II ⋮ A note on Dedekind zeta values at 1/2
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On an identity of Chowla and Selberg
- Transcendental values of the digamma function
- Hodge cycles, motives, and Shimura varieties
- Measures of simultaneous approximation for quasi-periods of Abelian varieties
- On ideals free of large prime factors
- Some applications of Kronecker's limit formulas
- Transcendental Nature of Special Values of L-Functions
- On a Conjecture of Chowla and Milnor
- On the logarithmic derivatives of Dirichlet L-functions at s=1
- On Epstein's Zeta-function.
- Introduction to algebraic independence theory. With contributions from F. Amoroso, D. Bertrand, W. D. Brownawell, G. Diaz, M. Laurent, Yu. V. Nesterenko, K. Nishioka, P. Philippon, G. Rémond, D. Roy, M. Waldschmidt