On the optimal control method in quaternionic analysis
DOI10.1016/j.bulsci.2011.09.004zbMath1238.49007OpenAlexW2020092667MaRDI QIDQ653657
Publication date: 19 December 2011
Published in: Bulletin des Sciences Mathématiques (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.bulsci.2011.09.004
optimal control methodquaternionic control and stochastic integralsquaternionic Monge--Ampère operatorquaternionic plurisubharmonic functionsquaternionic regular functions
Variational problems in a geometric measure-theoretic setting (49Q20) Nonlinear elliptic equations (35J60) Existence theories for optimal control problems involving partial differential equations (49J20) Plurisubharmonic functions and generalizations (32U05)
Related Items (17)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The tangential Cauchy-Fueter complex on the quaternionic Heisenberg group
- On non-homogeneous Cauchy-Fueter equations and Hartogs' phenomenon in several quaternionic variables
- The Dirichlet problem for a complex Monge-Ampère equation
- Méthodes de contrôle optimal en analyse complexe. I: Résolution d'équation de Monge Ampère
- Méthode de contrôle optimal en analyse complexe ou réelle. III. Diffusion des fonctions plurisousharmoniques ou convexes
- Hartog's phenomenon for polyregular functions and projective dimension of related modules over a polynomial ring
- Quaternionic Monge-Ampère equations
- Analysis of Dirac systems and computational algebra.
- Non-commutative linear algebra and plurisubharmonic functions of quaternionic variables.
- The \(k\)-Cauchy-Fueter complex, Penrose transformation and hartogs phenomenon for quaternionic \(k\)-regular functions
- Plurisubharmonic functions on hypercomplex manifolds and HKT-geometry
- On a Generalized Dirichlet Problem for Plurisubharmonic Functions and Pseudo-Convex Domains. Characterization of Silov Boundaries
This page was built for publication: On the optimal control method in quaternionic analysis