On the optimal control method in quaternionic analysis

From MaRDI portal
Publication:653657

DOI10.1016/j.bulsci.2011.09.004zbMath1238.49007OpenAlexW2020092667MaRDI QIDQ653657

Wei Wang

Publication date: 19 December 2011

Published in: Bulletin des Sciences Mathématiques (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1016/j.bulsci.2011.09.004




Related Items (17)

Viscosity solutions to quaternionic Monge-Ampère equationsOn the linear algebra in the quaternionic pluripotential theoryOn the Hodge-type decomposition and cohomology groups of \(k\)-Cauchy-Fueter complexes over domains in the quaternionic spaceOn the Cauchy-Szegő kernel for quaternion Siegel upper half-spaceOn Radon-Penrose transformation and \(k\)-Cauchy-Fueter operatorThe Neumann problem for the \(k\)-Cauchy-Fueter complex over \(k\)-pseudoconvex domains in \(\mathbb{R}^4\) and the \(L^2\) estimateA variational approach to the quaternionic Monge-Ampère equationQuasicontinuity and maximality of quaternionic plurisubharmonic functionsQuaternionic Monge-Ampère operator for unbounded plurisubharmonic functionsSub-Riemannian Geometry and Hypoelliptic OperatorsThe continuity and range of the quaternionic Monge-Ampère operator on quaternionic spaceThe quaternionic Monge-Ampère operator and plurisubharmonic functions on the Heisenberg groupThe tangential \(k\)-Cauchy-Fueter complexes and Hartogs' phenomenon over the right quaternionic Heisenberg groupHölder continuous solutions to quaternionic Monge-Ampère equationsOn the tangential Cauchy-Fueter operators on nondegenerate quadratic hypersurfaces in \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathbb {H}^2}$\end{document}The Cauchy-Szegö kernel for the Hardy space of 0-regular functions on the quaternionic Siegel upper half spaceOn the quaternionic Monge-Ampère operator, closed positive currents and Lelong-Jensen type formula on the quaternionic space



Cites Work


This page was built for publication: On the optimal control method in quaternionic analysis