Bifurcation analysis of a wind turbine generator drive system with stochastic excitation under both displacement and velocity delayed feedback
DOI10.1142/s0218127423500797zbMath1539.70033MaRDI QIDQ6537713
Xin-Lei An, Mengran Nan, Lixiang Wei, Meijuan He, Jian-Gang Zhang
Publication date: 14 May 2024
Published in: International Journal of Bifurcation and Chaos in Applied Sciences and Engineering (Search for Journal in Brave)
Monte Carlo methodItô stochastic differential equationcenter manifold methodchaos thresholdcubic forcemaximal Lyapunov exponential methodrandom D-bifurcation condition
Forced motions for nonlinear problems in mechanics (70K40) Bifurcations and instability for nonlinear problems in mechanics (70K50) Computational methods for problems pertaining to mechanics of particles and systems (70-08) Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics (70K55) Random vibrations in mechanics of particles and systems (70L05)
This page was built for publication: Bifurcation analysis of a wind turbine generator drive system with stochastic excitation under both displacement and velocity delayed feedback