On the well-posedness and decay rates of solutions to the Poisson-Nernst-Planck-Navier-Stokes system
DOI10.1007/S00021-024-00867-2zbMATH Open1539.35198MaRDI QIDQ6540636
Publication date: 17 May 2024
Published in: Journal of Mathematical Fluid Mechanics (Search for Journal in Brave)
Smoothness and regularity of solutions to PDEs (35B65) PDEs in connection with fluid mechanics (35Q35) Maximal functions, Littlewood-Paley theory (42B25) PDEs in connection with biology, chemistry and other natural sciences (35Q92) Magnetohydrodynamics and electrohydrodynamics (76W05) Existence problems for PDEs: global existence, local existence, non-existence (35A01) Motion of charged particles (78A35) Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics (76N10) Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness (35A02)
Cites Work
- Title not available (Why is that?)
- Title not available (Why is that?)
- Well-posedness on a new hydrodynamic model of the fluid with the dilute charged particles
- The incompressible limit in \(L^p\) type critical spaces
- Global weak solutions for an incompressible charged fluid with multi-scale couplings: initial-boundary-value problem
- Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical \(L^{p}\) framework
- Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities
- Well-posedness for the Navier-Stokes-Nernst-Planck-Poisson system in Triebel-Lizorkin space and Besov space with negative indices
- The steady boundary value problem for charged incompressible fluids: PNP/Navier-Stokes systems
- Asymptotic behavior of type I blowup solutions to a parabolic-elliptic system of drift-diffusion type
- Existence of global strong solutions in critical spaces for barotropic viscous fluids
- Global existence and asymptotic behavior of self-similar solutions for the Navier-Stokes-Nernst-Planck-Poisson system in \(\mathbb R^3\)
- The drift-diffusion system in two-dimensional critical Hardy space
- Quasineutral limit of the electro-diffusion model arising in electrohydrodynamics
- The mathematical theory of dilute gases
- Global existence in critical spaces for compressible Navier-Stokes equations
- On the Nernst-Planck-Navier-Stokes system
- Global existence for Nernst-Planck-Navier-Stokes system in \(\mathbb{R}^n\)
- Global wellposedness and large time behavior of solutions to the \(N\)-dimensional compressible Oldroyd-B model
- Long-time behavior for three dimensional compressible viscousand heat-conductive gases
- Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions
- Global well-posedness for the Navier-Stokes-Nernst-Planck-Poisson system in dimension two
- Uniqueness of weak solutions to a model of electro-kinetic fluid
- Quasi-neutral limit and the boundary layer problem of Planck-Nernst-Poisson-Navier-Stokes equations for electro-hydrodynamics
- Global large solutions and incompressible limit for the compressible Navier-Stokes equations
- The initial time layer problem and the quasineutral limit in the semiconductor drift-diffusion model
- A hierarchy of hydrodynamic models for plasmas. Quasi-neutral limits in the drift-diffusion equations
- A Generalized Poisson--Nernst--Planck--Navier--Stokes Model on the Fluid with the Crowded Charged Particles: Derivation and Its Well-Posedness
- The mixed layer problem and quasi-neutral limit of the drift-diffusion model for semiconductors
- Fourier Analysis and Nonlinear Partial Differential Equations
- GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR FOR A SEMICONDUCTOR DRIFT-DIFFUSION-POISSON MODEL
- Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity
- Decay Estimates and Large Time Behavior of Solutions to the Drift-Diffusion System
- On Existence, Uniqueness and Asymptotic Behavior of Solutions of the Basic Equations for Carrier Transport in Semiconductors
- The Debye system: existence and large time behavior of solutions
- Density-dependent incompressible viscous fluids in critical spaces
- ANALYTICAL APPROACHES TO CHARGE TRANSPORT IN A MOVING MEDIUM
- Global Large Solutions to the Three Dimensional Compressible Navier--Stokes Equations
- Global well-posedness of a dissipative system arising in electrohydrodynamics in negative-order Besov spaces
- Stability of Steady States of the Navier--Stokes--Poisson Equations with Non-Flat Doping Profile
- ANALYSIS OF THE NAVIER–STOKES–NERNST–PLANCK–POISSON SYSTEM
- QUASINEUTRAL LIMIT OF THE MULTI-DIMENSIONAL DRIFT-DIFFUSION-POISSON MODELS FOR SEMICONDUCTORS WITH PN-JUNCTIONS
- Global Well-Posedness and Stability of Electrokinetic Flows
- Green's function and pointwise estimate for a generalized Poisson‐Nernst‐Planck‐Navier‐Stokes model in dimension three
This page was built for publication: On the well-posedness and decay rates of solutions to the Poisson-Nernst-Planck-Navier-Stokes system
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6540636)