A multivariate extension of the Erdős-Taylor theorem
DOI10.1007/s00440-024-01267-3zbMath1546.82034MaRDI QIDQ6550171
Dimitris Lygkonis, Nikos Zygouras
Publication date: 4 June 2024
Published in: Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete (Search for Journal in Brave)
Erdős-Taylor theoremdirected polymer in random environmentplanar random walk collisionsSchrödinger operators with point interactions
Sums of independent random variables; random walks (60G50) Statistical mechanics of polymers (82D60) Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics (82B44) Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics (82B41) Many-body theory; quantum Hall effect (81V70) Schrödinger and Feynman-Kac semigroups (47D08)
Cites Work
- Unnamed Item
- Unnamed Item
- Directed polymers in random environments. École d'Été de Probabilités de Saint-Flour XLVI -- 2016
- The two-dimensional KPZ equation in the entire subcritical regime
- A quenched limit theorem for the local time of random walks on \(\mathbb Z^2\)
- Asymptotic laws of planar Brownian motion
- Universality in marginally relevant disordered systems
- The Dickman subordinator, renewal theorems, and disordered systems
- Moments of the 2D SHE at criticality
- Some problems concerning the structure of random walk paths
- Random Walk: A Modern Introduction
- Etude asymptotique des nombres de tours de plusieurs mouvements browniens complexes corrélés
- Foundations of Modern Probability
- Multi-particle Schrödinger operators with point interactions in the plane
- Moments of partition functions of 2d Gaussian polymers in the weak disorder regime-I
Related Items (1)
This page was built for publication: A multivariate extension of the Erdős-Taylor theorem