Tilting for regular rings of Krull dimension two
From MaRDI portal
Publication:657949
DOI10.1016/j.jalgebra.2011.02.047zbMath1234.13012OpenAlexW2033681607WikidataQ57571139 ScholiaQ57571139MaRDI QIDQ657949
Publication date: 11 January 2012
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jalgebra.2011.02.047
Module categories in associative algebras (16D90) Structure, classification theorems for modules and ideals in commutative rings (13C05) Regular local rings (13H05)
Related Items (6)
One-tilting classes and modules over commutative rings ⋮ Closure properties of \(\varinjlim \mathcal{C}\) ⋮ Pure projective tilting modules ⋮ Cotilting modules over commutative Noetherian rings ⋮ Stratifying derived module categories ⋮ Tilting, cotilting, and spectra of commutative noetherian rings
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Tilting modules over almost perfect domains
- \(\mathcal F\)-divisible modules and tilting modules over Prüfer domains
- Tilting modules of finite projective dimension
- On the structure of *-modules
- Flat covers of modules
- Tilting modules and tilting torsion theories
- Relative homological algebra
- Tilting classes over wild hereditary algebras.
- Approximations and endomorphism algebras of modules.
- Cotorsion pairs generated by modules of bounded projective dimension.
- Infinitely generated tilting modules of finite projective dimension
- Derived equivalence induced by infinitely generated 𝑛-tilting modules
- A tilting module over commutative integral domains
- S-divisible modules over domains
- Equivalences induced by infinitely generated tilting modules
- All tilting modules are of finite type
- Representation type of commutative Noetherian rings. III. Global wildness and tameness
- Tilting modules and Gorenstein rings
- Tilting Cotorsion Pairs
This page was built for publication: Tilting for regular rings of Krull dimension two