The intransitive dice kernel: \( \frac{1\kern-2pt\mathrm{I}_{x\ge y}-1\kern-2pt\mathrm{I}_{x\le y}}{4} - \frac{3(x-y)(1+xy)}{8} \)
From MaRDI portal
Publication:6582363
DOI10.1007/s00440-024-01270-8zbMATH Open1544.6002MaRDI QIDQ6582363
Publication date: 2 August 2024
Published in: Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete (Search for Journal in Brave)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Generalized intransitive dice. II: Partition constructions
- Noise stability of functions with low influences: invariance and optimality
- Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung.
- The probability of intransitivity in dice and close elections
- Generalized intransitive dice: mimicking an arbitrary tournament
- Decomposition of tournament limits
- Generating oriented graphs by means of team comparisons
- Anti-concentration for polynomials of independent random variables
- Quasi-random tournaments
- Graph limits and exchangeable random graphs
- The Bizarre World of Nontransitive Dice: Games for Two or More Players
- A Direct Construction of Nontransitive Dice Sets
- High-Dimensional Probability
- Intransitive Dice
- Analysis of Boolean Functions
- Inequalities for the $r$th Absolute Moment of a Sum of Random Variables, $1 \leqq r \leqq 2$
- Graph Theory and Additive Combinatorics
- Distributional and \(L^q\) norm inequalities for polynomials over convex bodies in \(\mathbb{R}^n\)
This page was built for publication: The intransitive dice kernel: \( \frac{1\kern-2pt\mathrm{I}_{x\ge y}-1\kern-2pt\mathrm{I}_{x\le y}}{4} - \frac{3(x-y)(1+xy)}{8} \)