Some evaluations of infinite series involving Dirichlet type parametric harmonic numbers
From MaRDI portal
Publication:6589629
DOI10.4134/bkms.b230299MaRDI QIDQ6589629
Ce Xu, Hongyuan Rui, Xiaobin Yin
Publication date: 20 August 2024
Published in: Bulletin of the Korean Mathematical Society (Search for Journal in Brave)
Hurwitz zeta functionscontour integrationsparametric linear Euler sumsparametric harmonic numbersresidue computationsgeneral parametric digamma function
Cites Work
- Unnamed Item
- Unnamed Item
- Quadratic and cubic harmonic number sums
- Some summation formulas involving harmonic numbers and generalized harmonic numbers
- Euler sums of hyperharmonic numbers
- Nonlinear Euler sums
- Multiple zeta values and Euler sums
- Identities for the harmonic numbers and binomial coefficients
- Certain summation formulas involving harmonic numbers and generalized harmonic numbers
- Hyperharmonic series involving Hurwitz zeta function
- Euler sums and Stirling sums
- Euler-type sums involving multiple harmonic sums and binomial coefficients
- Extension of the four Euler sums being linear with parameters and series involving the zeta functions
- Explicit formulas of Euler sums via multiple zeta values
- Four parametric linear Euler sums
- Quadratic alternating harmonic number sums
- Some evaluation of parametric Euler sums
- Multiple Zeta Functions, Multiple Polylogarithms and Their Special Values
- Euler Sums and Contour Integral Representations
- Experimental Evaluation of Euler Sums
- Evaluation of Euler-like sums via Hurwitz zeta values
- Explicit evaluation of Euler sums
- EXTENSIONS OF EULER-TYPE SUMS AND RAMANUJAN-TYPE SUMS
- Some evaluations of infinite series involving parametric harmonic numbers
Related Items (1)
This page was built for publication: Some evaluations of infinite series involving Dirichlet type parametric harmonic numbers