Marginal log-linear parameters and their collapsibility for categorical data
From MaRDI portal
Publication:6590554
DOI10.1111/stan.12332MaRDI QIDQ6590554
Palaniappan Vellaisamy, Sayan Ghosh
Publication date: 21 August 2024
Published in: Statistica Neerlandica (Search for Journal in Brave)
collapsibilityconditional independencecontingency tablesmooth parameterizationmarginal log-linear parameters
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Marginal parameterizations of discrete models defined by a set of conditional independencies
- Log-linear modeling using conditional log-linear structures
- Marginal models. For dependent, clustered, and longitudinal categorical data
- Marginal models for categorical data
- Collapsibility of contingency tables based on conditional models
- Smoothness of marginal log-linear parameterizations
- Some collapsibility results for \(n\)-dimensional contingency tables
- Marginal log-linear parameterization of conditional independence models
- A class of regression models for multivariate categorical responses
- Simultaneously Modeling Joint and Marginal Distributions of Multivariate Categorical Responses
- A NOTE ON MULTIVARIATE LOGISTIC MODELS FOR CONTINGENCY TABLES
- A General Condition for Avoiding Effect Reversal after Marginalization
- Simpson's Paradox and Collapsibility
- Marginal Log-Linear Parameters for Graphical Markov Models
This page was built for publication: Marginal log-linear parameters and their collapsibility for categorical data