Relative Poisson bialgebras and Frobenius Jacobi algebras
DOI10.4171/jncg/546MaRDI QIDQ6594008
Publication date: 27 August 2024
Published in: Journal of Noncommutative Geometry (Search for Journal in Brave)
classical Yang-Baxter equationJacobi algebrabialgebraFrobenius Jacobi algebrarelative Poisson algebrarelative pre-Poisson algebra
Poisson manifolds; Poisson groupoids and algebroids (53D17) Poisson algebras (17B63) Automorphisms, derivations, other operators (nonassociative rings and algebras) (17A36) Ternary compositions (17A40) Lie-admissible algebras (17D25) Relations of finite-dimensional Hamiltonian and Lagrangian systems with topology, geometry and differential geometry (symplectic geometry, Poisson geometry, etc.) (37J39) Algebraic operads, cooperads, and Koszul duality (18M70)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The Hochschild cohomology ring of a Frobenius algebra with semisimple Nakayama automorphism is a Batalin-Vilkovisky algebra.
- Generalized Poisson algebras and Hamiltonian dynamics
- Matched pairs of Lie groups associated to solutions of the Yang-Baxter equations
- Les variétés de Poisson et leurs algèbres de Lie associees
- Les variétés de Jacobi et leurs algèbres de Lie associees
- Metric Lie algebras with maximal isotropic centre
- Theorie der hyperkomplexen Größen I. II.
- Algebraic structures of \(F\)-manifolds via pre-Lie algebras
- Double constructions of Frobenius algebras, Connes cocycles and their duality
- Brackets, superalgebras and spectral gap
- Classification of linearly compact simple Jordan and generalized Poisson superalgebras
- Left-symmetric algebras, or pre-Lie algebras in geometry and physics
- Algebras of Jordan brackets and generalized Poisson algebras
- Algèbres de Lie et produit scalaire invariant
- Coalgebras and Bialgebras in Combinatorics
- The kantor construction of jordan superalgebras
- Noncommutative Poisson Algebras
- What a Classical r-Matrix Really Is
- CUP-Product for Leibnitz Cohomology and Dual Leibniz Algebras.
- Classification of Linearly Compact Simple Rigid Superalgebras
- On the structure of symmetric self-dual Lie algebras
- A unified algebraic approach to the classical Yang–Baxter equation
- Poisson bialgebras
- Generalized Frobenius Algebras and Hopf Algebras
- On the regular representations of algebras.
- Pre-Poisson algebras
- On the associative analog of Lie bialgebras
- Jacobi and Poisson algebras
- Central extensions of 3-dimensional Zinbiel algebras
- Transposed Poisson algebras, Novikov-Poisson algebras and 3-Lie algebras
Related Items (2)
This page was built for publication: Relative Poisson bialgebras and Frobenius Jacobi algebras