Cuspidal representations of \(\mathrm{GL}_r(D)\) distinguished by an inner involution
From MaRDI portal
Publication:6596069
DOI10.24033/asens.2585MaRDI QIDQ6596069
Publication date: 2 September 2024
Published in: Annales Scientifiques de l'École Normale Supérieure. Quatrième Série (Search for Journal in Brave)
type theorycuspidal representationdistinguished representationroot numberendo-classsymplectic parameter
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Smooth representations of \(\text{GL}_m(D)\). V: Endo-classes
- Representations of \(GL(n)\) and division algebras over a p-adic field
- The essentially tame Jacquet-Langlands correspondence for inner forms of \(\text{GL}(n)\)
- The local Langlands conjecture for \(\text{GSp}(4)\)
- Two multiplicity-free permutation representations of the general linear group \(GL(n,q^ 2)\)
- Symplectic supercuspidal representations of \(\text{GL}(2n)\) over \(p\)-adic fields
- Simple characters for principal orders in \(M_m(D)\)
- Tamely ramified supercuspidal representations of \(Gl_n\)
- More on embeddings of local fields in simple algebras
- Local tame lifting for \(GL(N)\). I: Simple characters
- Uniqueness of generalized Waldspurger model for \(GL(2n)\)
- Periods and nonvanishing of central \(L\)-values for \(\mathrm{GL}(2n)\)
- Jordan blocks of cuspidal representations of symplectic groups
- Cuspidal representations of \(Gl(n,F)\) distinguished by a maximal Levi subgroup, with \(F\) a non-Archimedean local field
- On distinguished square-integrable representations for Galois pairs and a conjecture of Prasad
- Globalization of supercuspidal representations over function fields and applications
- Classification of standard modules with linear periods
- Linear and Shalika local periods for the mirabolic group, and some consequences
- Galois self-dual cuspidal types and Asai local factors
- The inertial Jacquet-Langlands correspondence
- The split case of the Prasad-Takloo-Bighash conjecture for cuspidal representations of level zero
- Supercuspidal representations of \(\mathrm{GL}_n(F)\) distinguished by an orthogonal involution
- Supercuspidal representations of \(\mathrm{GL}_n(\mathrm{F})\) distinguished by a Galois involution
- Local Jacquet-Langlands corespondence and congruences modulo \(\ell\)
- Distinction of the Steinberg representation and a conjecture of Prasad and Takloo-Bighash
- Global Jacquet-Langlands correspondence, multiplicity one and classification of automorphic representations. With an appendix by Neven Grbac.
- Automorphic forms on GL (2)
- Epsilon dichotomy for linear models
- Intertwining and Supercuspidal Types for p -Adic Classical Groups
- Tame supercuspidal representations of 𝐺𝐿_{𝑛} distinguished by orthogonal involutions
- Smooth Representations of GLm(D) VI: Semisimple Types
- To an effective local Langlands Corrspondence
- Types modulo ℓ pour les formes intérieures de GLnsur un corps local non archimédien
- Sur le dual unitaire de GL<i><sub>r</sub></i>(<i>D</i>)
- The Admissible Dual of GL(N) via Compact Open Subgroups. (AM-129)
- The Characters of the Finite General Linear Groups
- Semisimple characters for inner forms II: Quaternionic forms of 𝑝-adic classical groups (𝑝 odd)
- Local ε-Factors and Characters of GL(2)
- Représentations lisses de GL(m, D) II : β-extensions
- Représentations lisses de GLm(D)GLm(D), III : types simples
- REPRÉSENTATIONS LISSES DE $\mathrm{GL}_{m}(\mathrm{D})$ IV : REPRÉSENTATIONS SUPERCUSPIDALES
- Generalised form of a conjecture of Jacquet and a local consequence
- Distinguished Tame Supercuspidal Representations
- Symmetry, Representations, and Invariants
- Schémas en groupes et immeubles des groupes classiques sur un corps local
- Induced representations of reductive ${\germ p}$-adic groups. II. On irreducible representations of ${\rm GL}(n)$
- Extension Du Formalisme De Bushnell Et Kutzko Au Cas D'une Algèbre À Division
- Calculs De Facteurs Epsilon De Paires Pour GL n Sur Un Corps Local, I
- Sur le comportement, par torsion, des facteurs epsilon de paires
- Self-contragredient supercuspidal representations of $\mathrm {GL}_n$
- Local Tame Lifting for GL(n) IV: Simple Characters and Base Change
- Weak Explicit Matching for Level Zero Discrete Series of Unit Groups of 𝔭-Adic Simple Algebras
- Global Jacquet-Langlands Correspondence for Division Algebras in Characteristic $p$
- Sp(2)-covers for self-contragredient supercuspidal representations of GL()
- The essentially tame local Langlands correspondence, I
- Induced representations of GL (n, A) for p-adic division algebras A.
- Correspondance de Jacquet–Langlands pour les corps locaux de caractéristique non nulle
- Représentations lisses de $\textup {GL} (m,D)$ I : caractères simples
- Distinguished representations and poles of twisted tensor 𝐿-functions
- Asai L-functions and Jacquet's conjecture
- Symplectic local root numbers, central critical L-values, and restriction problems in the representation theory of classical groups
- Multiplicity One for Pairs of Prasad–Takloo-Bighash Type
- Bessel models for GSp(4)
- Towards an explicit local Jacquet–Langlands correspondence beyond the cuspidal case
- Intertwining of Simple Characters in GL(n)
- An explicit matching theorem for level zero discrete series of unit groups ofp-adic simple algebras
- Correspondance de Jacquet-Langlands et distinction : cas des représentations cuspidales de niveau 0
- Supercuspidal representations of $\mathrm{GL}_{n}(F)$ distinguished by a unitary involution
- Algèbre
- Linear intertwining periods and epsilon dichotomy for linear models
Related Items (1)
This page was built for publication: Cuspidal representations of \(\mathrm{GL}_r(D)\) distinguished by an inner involution