Dispersion and fractional Lie group analysis of time fractional equation from Burgers hierarchy
DOI10.11948/20180152MaRDI QIDQ6596574
Bikramjeet Kaur, Rajesh K. Gupta
Publication date: 2 September 2024
Published in: Journal of Applied Analysis and Computation (Search for Journal in Brave)
Hyperbolic conservation laws (35L65) Series solutions to PDEs (35C10) Symmetries and conservation laws in mechanics of particles and systems (70S10) Dispersion theory, dispersion relations arising in quantum theory (81U30) Fractional ordinary differential equations (34A08) Symmetries, invariants, etc. in context of PDEs (35B06)
Cites Work
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- FracSym: automated symbolic computation of Lie symmetries of fractional differential equations
- Symmetry analysis and conservation laws for the class of time-fractional nonlinear dispersive equation
- Fractional Lie group method of the time-fractional Boussinesq equation
- Invariant analysis of time fractional generalized Burgers and Korteweg-de Vries equations
- Fractional sub-equation method and its applications to nonlinear fractional PDEs
- Burgers hierarchy: multiple kink solutions and multiple singular kink solutions
- A formulation of the fractional Noether-type theorem for multidimensional Lagrangians
- Solitary wave solution for the generalized KdV equation with time-dependent damping and dispersion
- Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations
- Conservation laws for time-fractional subdiffusion and diffusion-wave equations
- Dispersion analysis and improved F-expansion method for space-time fractional differential equations
- A new conservation theorem
- A formulation of Noether's theorem for fractional problems of the calculus of variations
- Partial differential equations and solitary waves theory
- Variational problems with fractional derivatives: invariance conditions and Nöther's theorem
- The fractional calculus. Theory and applications of differentiation and integration to arbitrary order
- Similarity methods for differential equations
- Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications
- Invariant variational problems
- Exact traveling wave solutions of the van der Waals normal form for fluidized granular matter
- Lie symmetry analysis and exact solution of certain fractional ordinary differential equations
- Invariance properties, conservation laws, and soliton solutions of the time-fractional \((2+1)\)-dimensional new coupled ZK system in magnetized dusty plasmas
- Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative
- Group analysis and exact solutions of the time fractional Fokker-Planck equation
- A continuous/discrete fractional Noether's theorem
- Time fractional (2+1)-dimensional Wu-Zhang system: dispersion analysis, similarity reductions, conservation laws, and exact solutions
- Fractional complex transform and exp-function methods for fractional differential equations
- Time-fractional Cahn-Allen and time-fractional Klein-Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis
- Lie symmetry analysis, explicit solutions and conservation laws for the space-time fractional nonlinear evolution equations
- Lie symmetries and conservation laws for the time fractional Derrida-Lebowitz-Speer-Spohn equation
- Noether-type symmetries and conservation laws via partial Lagrangians
- The integrable couplings of the generalized coupled Burgers hierarchy and its Hamiltonian structures
- Invariant analysis and exact solutions of nonlinear time fractional Sharma-Tasso-Olver equation by Lie group analysis
- On invariant analysis of some time fractional nonlinear systems of partial differential equations. I
- Lie Symmetries, Conservation Laws and Explicit Solutions for Time Fractional Rosenau–Haynam Equation
- Dispersion relations for the time-fractional Cattaneo-Maxwell heat equation
- Direct construction method for conservation laws of partial differential equations Part I: Examples of conservation law classifications
- ( G ′/ G )-Expansion Method for Solving Fractional Partial Differential Equations in the Theory of Mathematical Physics
- Generalized Lie symmetry approach for fractional order systems of differential equations. III
- On invariant analysis of space-time fractional nonlinear systems of partial differential equations. II
- Integrable Hamiltonian hierarchies. Spectral and geometric methods
- Symmetries and differential equations
Related Items (1)
This page was built for publication: Dispersion and fractional Lie group analysis of time fractional equation from Burgers hierarchy
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6596574)