On the Blaschke isoparametric hypersurfaces in the unit sphere with three distinct Blaschke eigenvalues
From MaRDI portal
Publication:660004
DOI10.1007/S11425-011-4291-9zbMath1242.53011OpenAlexW2030622111MaRDI QIDQ660004
Shujie Zhai, Xing Xiao Li, Ze-Jun Hu
Publication date: 24 January 2012
Published in: Science China. Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11425-011-4291-9
Möbius formMöbius metricBlaschke tensorMöbius second fundamental formMöbius invariantsBlaschke isoparametric hypersurfaces
Related Items (7)
Space-like Blaschke isoparametric submanifolds in the light-cone of constant scalar curvature ⋮ Regular space-like hypersurfaces in \(\mathbb S^{m+1}_1\) with parallel para-Blaschke tensors ⋮ A complete classification of Blaschke parallel submanifolds with vanishing Möbius form ⋮ On hypersurfaces with parallel Möbius form and constant para-Blaschke eigenvalues ⋮ Submanifolds with parallel Möbius second fundamental form in the unit sphere ⋮ Equiaffine isoparametric functions and their regular level hypersurfaces ⋮ On submanifolds with parallel Möbius second fundamental form in the unit sphere
Cites Work
- Unnamed Item
- Möbius isoparametric hypersurfaces with three distinct principal curvatures. II
- Classification of the Blaschke isoparametric hypersurfaces with three distinct Blaschke eigenvalues
- Immersed hypersurfaces in the unit sphere \(S^{m+1}\) with constant Blaschke eigenvalues
- Möbius isoparametric hypersurfaces with three distinct principal curvatures
- Classification of Möbius isoparametric hypersurfaces in the unit six-sphere
- On the Blaschke isoparametric hypersurfaces in the unit sphere
- Dupin hypersurfaces with three principal curvatures
- Moebius geometry of submanifolds in \(\mathbb{S}^n\)
- Möbius geometry of hypersurfaces with constant mean curvature and scalar curvature
- Möbius isotropic submanifolds in \(\mathbb{S}^n\)
- Möbius isoparametric hypersurfaces in \(S^{n+1}\) with two distinct principal curvatures
- Classification of hypersurfaces with parallel Möbius second fundamental form in \(S^{n+1}\)
- Isoparametric hypersurfaces with four principal curvatures
- A classification of immersed hypersurfaces in spheres with parallel Blaschke tensors
- A Möbius characterization of submanifolds in real space forms with parallel mean curvature and constant scalar curvature
- Classification of Möbius isoparametric hypersurfaces in \({\mathbb S}^5\)
- Familles de surfaces isoparametriques dans les espaces à courbure constante
- Sur des familles remarquables d'hypersurfaces isoparametriques dans les espaces spheriques
- Classification of Möbius Isoparametric Hypersurfaces in 4
- A CLASSIFICATION OF HYPERSURFACES WITH PARALLEL PARA-BLASCHKE TENSOR IN Sm+1
This page was built for publication: On the Blaschke isoparametric hypersurfaces in the unit sphere with three distinct Blaschke eigenvalues