Semisimplicity of the Frobenius action on \(\pi_1\)
From MaRDI portal
Publication:6603910
DOI10.1007/978-3-031-21550-6_2MaRDI QIDQ6603910
Publication date: 12 September 2024
Local ground fields in algebraic geometry (14G20) Variation of Hodge structures (algebro-geometric aspects) (14D07) Varieties over finite and local fields (11G25) Homotopy theory and fundamental groups in algebraic geometry (14F35) Transcendental methods, Hodge theory (algebro-geometric aspects) (14C30) (p)-adic cohomology, crystalline cohomology (14F30)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Tangential localization for Selmer varieties
- Rigidity and a Riemann-Hilbert correspondence for \(p\)-adic local systems
- A \(p\)-adic nonabelian criterion for good reduction of curves
- Weights in arithmetic geometry
- The unipotent Albanese map and Selmer varieties for curves
- Über die lokale Zetafunktion von Shimuravarietaeten. Monodromiefiltration und verschwindende Zyklen in ungleicher Charakteristik
- La fonction zeta d'une monodromie
- \(p\)-adic étale cohomology and crystalline cohomology in the semi-stable reduction case
- Spectral sequence of weights in Hyodo-Kato cohomology
- \(p\)-adic representations and differential equations
- Degeneration of Hodge structures
- Local monodromy on the fundamental groups of algebraic curves along a degenerate stable curve
- Construction of semi-stable \(p\)-adic representations
- Arithmetic representations of fundamental groups. I.
- The motivic fundamental group of \(\mathbf P^1\setminus\{0,1,\infty\}\) and the theorem of Siegel
- Groupes fondamentaux motiviques de Tate mixte
- Mixed Hodge structures on homotopy groups
- Infinitesimal presentations of the Torelli groups
- Around -independence
- Coleman integration using the Tannakian formalism
Related Items (2)
The motivic anabelian geometry of local heights on abelian varieties ⋮ The Ceresa class: tropical, topological and algebraic
This page was built for publication: Semisimplicity of the Frobenius action on \(\pi_1\)