On the singularities of complete holomorphic vector fields in dimension two
From MaRDI portal
Publication:6604704
DOI10.1007/978-3-031-54172-8_1MaRDI QIDQ6604704
Publication date: 13 September 2024
Research exposition (monographs, survey articles) pertaining to several complex variables and analytic spaces (32-02) Singularities of holomorphic vector fields and foliations (32S65)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Almost étale resolution of foliations
- Vector fields, separatrices and Kato surfaces
- \(C^ k\)-conjugacy of holomorphic flows near a singularity
- Reduction of singularities of three-dimensional line foliations
- Problèmes de modules pour des équations différentielles non linéaires du premier ordre
- Komplexe Flächen mit holomorphen Vektorfeldern. (Complex surfaces with holomorphic vector fields)
- Semicompleteness of homogeneous quadratic vector fields
- 2-dimensional Lie algebras and separatrices for vector fields on \((\mathbb{C}^3, 0)\)
- Surfaces of class \(VII_ 0\) with curves
- Invariant varieties through singularities of holomorphic vector fields
- Desingularization of non-dicritical holomorphic foliations and existence of separatrices
- Complete polynomial vector fields on the complex plane.
- Sur les équations différentielles du troisième ordre et d'ordre supérieur dont líntégrale générale a ses points critiques fixes.
- Recherches sur les points singuliers des équations différentielles.
- Mémoire sur les équations différentielles dont l'intégrale générale est uniforme.
- On the problem of the rotation of a solid body about a fixed axis.
- On a theorem of J. -P. Jouanolou concerning closed leaves of holomorphic foliations
- A brief history of Kovalevskaya exponents and modern developments
- Surfaces of the class VII\(_0\) admitting a vector field
- Semicomplete vector fields on non-Kähler surfaces
- Quadratic differential equations in three variables without multivalued solutions. I
- Germs of holomorphic vector fields in \(\mathbb{C}^ 3\) without a separatrix
- Vector fields and foliations on compact surfaces of class \(\text{VII}_0\)
- Singularités des flots holomorphes. (Singularities of holomorphic flows.)
- Enveloping actions and Takai duality for partial actions.
- On the classification of smooth compact \(\mathbb{C}^*\)-surfaces
- Limits of complete holomorphic vector fields
- Complete fields with nonisolated singularities on complex surfaces
- On the local univalence of nondegenerate holomorphic vector fields
- On the multipliers at fixed points of quadratic self-maps of the projective plane with an invariant line
- Derivations and integral closure
- On the equations of Halphen and \(\mathrm{SL}_{2}(\mathbb C)\)-actions
- Equivalence and semi-completude of foliations
- Analytical solutions of the Lorenz system
- Reduction of the singularities of codimension one singular foliations in dimension three
- A fixed-point theorem for endomorphisms of the projective space with applications to algebraic foliations
- Semicomplete meromorphic vector fields on complex surfaces
- Classification analytique des équations différentielles non linéaires résonnantes du premier ordre
- Structure des surfaces de Kato
- Groupes d'automorphismes de $({\bbfC},0)$ et équations différentielles $ydy+\cdots =0$
- Semi-complete vector fields of saddle-node type in $\mathbb {C}^n$
- Holonomie et intégrales premières
- Compact complex manifolds containing “global” spherical shells
- Classification of singular germs of mappings and deformations of compact surfaces of class VII₀
- [https://portal.mardi4nfdi.de/wiki/Publication:4299146 Classification de certains feuilletages associ�s � un cusp]
- Germs of holomorphic vector fields in $\mathbb {C}^m$ without a separatrix
- Higher‐order Painlevé Equations in the Polynomial Class I. Bureau Symbol P2
- Pseudo-groupe d’une singularité de feuilletage holomorphe en dimension deux
- Palais leaf-space manifolds and surfaces carrying holomorphic flows
- Birational Geometry of Foliations
- Reduction of Singularities of the Differential Equation Ady = Bdx
- A global formulation of the Lie theory of transformation groups
- Realization of germs of holomorphic foliations by semi-complete fields in dimension 2
- Surfaces of the class VII\(_0\) admitting a vector field. II
- Foliated affine and projective structures
This page was built for publication: On the singularities of complete holomorphic vector fields in dimension two