Degeneration from difference to differential Okamoto spaces for the sixth Painlevé equation
From MaRDI portal
Publication:6607738
DOI10.5802/afst.1760zbMATH Open1547.14007MaRDI QIDQ6607738
Publication date: 18 September 2024
Published in: Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI (Search for Journal in Brave)
Structure of families (Picard-Lefschetz, monodromy, etc.) (14D05) Difference equations, scaling ((q)-differences) (39A13) Homotopy theory and fundamental groups in algebraic geometry (14F35) Isomonodromic deformations for ordinary differential equations in the complex domain (34M56)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Confluence of meromorphic solutions of \(q\)-difference equations
- Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II
- On \(q\)-summation and confluence
- Studies of the Painlevé equations. I: Sixth Painlevé equation \(P_{VI}\)
- Systèmes aux \(q\)-différences singuliers réguliers : classification, matrice de connexion et monodromie. (Regular singular \(q\)-difference systems: Classification, connection matrix and monodromy)
- Differential embedding problems over complex function fields
- A \(q\)-analog of the sixth Painlevé equation
- On isomonodromic deformations of Fuchsian systems
- The meromorphic nature of the sixth Painlevé transcendents
- Isomonodromic deformation of Lamé connections, Painlevé VI equation and Okamoto symmetry
- Geometric aspects of Painlevé equations
- Isomonodromic deformation of 𝑞-difference equations and confluence
- Building Meromorphic Solutions ofq-Difference Equations Using a Borel–Laplace Summation
- Asymptotic behaviour around a boundary point of theq-Painlevé VI equation and its connection problem
- Fundamental solutions for meromorphic linear difference equations in the complex plane, and related problems.
- A Direct Proof that Solutions of the Six Painlevé Equations Have No Movable Singularities Except Poles
- Do integrable mappings have the Painlevé property?
- Local analytic classification of q-difference equations
- Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen.
This page was built for publication: Degeneration from difference to differential Okamoto spaces for the sixth Painlevé equation