A locally conservative staggered least squares method on polygonal meshes
From MaRDI portal
Publication:6618890
DOI10.3934/mine.2024014MaRDI QIDQ6618890
Publication date: 15 October 2024
Published in: Mathematics in Engineering (Search for Journal in Brave)
error estimatesadaptive mesh refinementsuperconvergenceleast squaresstaggered gridlocal conservationhanging nodesgeneral meshes
Cites Work
- Unnamed Item
- Unnamed Item
- On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations
- An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators
- A posteriori error estimators for the first-order least-squares finite element method
- A least-squares finite element method for the Helmholtz equation
- A posteriori error estimation in least-squares stabilized finite element schemes
- Accuracy of least-squares methods for the Navier--Stokes equations
- Superconvergence and a posteriori error estimation for triangular mixed finite elements
- Guaranteed a posteriori error estimates for a staggered discontinuous Galerkin method
- A posteriori error estimates for the virtual element method
- A staggered DG method of minimal dimension for the Stokes equations on general meshes
- Fully computable bounds for a staggered discontinuous Galerkin method for the Stokes equations
- Asymptotically exact a posteriori error estimators for first-order div least-squares methods in local and global \(L_2\) norm
- A staggered discontinuous Galerkin method for quasi-linear second order elliptic problems of nonmonotone type
- A new hybrid staggered discontinuous Galerkin method on general meshes
- Convergence of natural adaptive least squares finite element methods
- $hp$-Version Composite Discontinuous Galerkin Methods for Elliptic Problems on Complicated Domains
- Convergence and Optimality of Adaptive Least Squares Finite Element Methods
- Optimal Discontinuous Galerkin Methods for the Acoustic Wave Equation in Higher Dimensions
- A weak Galerkin mixed finite element method for second order elliptic problems
- A Staggered Cell-Centered DG Method for Linear Elasticity on Polygonal Meshes
- Superconvergence and Extrapolation for Mixed Finite Element Methods on Rectangular Domains
- Superconvergence of the Velocity Along the Gauss Lines in Mixed Finite Element Methods
- Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems
- Superconvergence of quadratic finite elements on mildly structured grids
- Superconvergence of Mixed Finite Element Approximations over Quadrilaterals
- Analysis of Least Squares Finite Element Methods for the Stokes Equations
- First-Order System Least Squares for Second-Order Partial Differential Equations: Part I
- A Posteriori Least-Squares Finite Element Error Analysis for the Navier–Stokes Equations
- Poincaré--Friedrichs Inequalities for Piecewise H1 Functions
- Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence
- A Staggered Discontinuous Galerkin Method of Minimal Dimension on Quadrilateral and Polygonal Meshes
- Global Superconvergence of the Lowest-Order Mixed Finite Element on Mildly Structured Meshes
- Least-Squares Methods for Linear Elasticity
- Analysis of recovery type a posteriori error estimators for mildly structured grids
- BASIC PRINCIPLES OF VIRTUAL ELEMENT METHODS
- Staggered DG Methods for the Pseudostress-Velocity Formulation of the Stokes Equations on General Meshes
- Staggered DG Method for Coupling of the Stokes and Darcy--Forchheimer Problems
- hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes
- Optimal Discontinuous Galerkin Methods for Wave Propagation
- A locally conservative least‐squares method for Darcy flows
- QuadrilateralH(div) Finite Elements
- The $L^2$ Norm Error Estimates for the Div Least‐Squares Method
This page was built for publication: A locally conservative staggered least squares method on polygonal meshes