Matrix-weighted Besov-type and Triebel-Lizorkin-type spaces. III: Characterizations of molecules and wavelets, trace theorems, and boundedness of pseudo-differential operators and Calderón-Zygmund operators
DOI10.1007/s00209-024-03584-8MaRDI QIDQ6623316
Wen Yuan, Da Chun Yang, Fan Bu, Tuomas P. Hytönen
Publication date: 23 October 2024
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
tracewaveletpseudo-differential operatormoleculeBesov-type spaceCalderón-Zygmund operatormatrix weightTriebel-Lizorkin-type space\(A_p\)-dimension
Nontrigonometric harmonic analysis involving wavelets and other special systems (42C40) Pseudodifferential operators as generalizations of partial differential operators (35S05) Singular and oscillatory integrals (Calderón-Zygmund, etc.) (42B20) Maximal functions, Littlewood-Paley theory (42B25) Function spaces arising in harmonic analysis (42B35) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Functions whose values are linear operators (operator- and matrix-valued functions, etc., including analytic and meromorphic ones) (47A56)
Related Items (3)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Smoothness Morrey spaces of regular distributions, and some unboundedness property
- Molecular decomposition and Fourier multipliers for holomorphic Besov and Triebel-Lizorkin spaces
- Theory of Besov spaces
- A discrete transform and decompositions of distribution spaces
- Some embeddings of Morrey spaces with critical smoothness
- The boundedness of Calderón-Zygmund operators on the spaces \(\dot F_ p^{\alpha,q}\)
- A new class of function spaces connecting Triebel--Lizorkin spaces and \(Q\) spaces
- New Besov-type spaces and Triebel-Lizorkin-type spaces including \(Q\) spaces
- Bases in function spaces, sampling, discrepancy, numerical integration
- Decompositions of Besov-Hausdorff and Triebel-Lizorkin-Hausdorff spaces and their applications
- Morrey and Campanato meet Besov, Lizorkin and Triebel
- Wavelet characterization of Besov-Morrey and Triebel-Lizorkin-Morrey spaces
- New applications of Besov-type and Triebel-Lizorkin-type spaces
- Wavelet bases in the weighted Besov and Triebel-Lizorkin spaces with \(A_p^{\text{loc}}\)-weights
- A boundedness criterion for generalized Calderón-Zygmund operators
- Ondelettes et bases hilbertiennes. (Wavelets and Hilbert bases)
- Pseudodifferential operators with homogeneous symbols
- New characterizations of Besov-Triebel-Lizorkin-Hausdorff spaces including coorbits and wavelets
- Matrix \(A_p\) weights via maximal functions.
- Duality of weighted anisotropic Besov and Triebel-Lizorkin spaces
- Littlewood-Paley theory for matrix-weighted function spaces
- Wavelet decomposition and embeddings of generalised Besov-Morrey spaces
- Molecular decomposition of anisotropic homogeneous mixed-norm spaces with applications to the boundedness of operators
- Atomic and molecular decomposition of homogeneous spaces of distributions associated to non-negative self-adjoint operators
- Besov and Triebel-Lizorkin spaces associated to Hermite operators
- Wavelet transforms for homogeneous mixed-norm Triebel-Lizorkin spaces
- Decompositions of Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces
- Anisotropic Triebel-Lizorkin spaces with doubling measures
- Duality and interpolation of anisotropic Triebel-Lizorkin spaces
- Atomic and molecular decompositions of anisotropic Besov spaces
- Product Besov and Triebel-Lizorkin spaces with application to nonlinear approximation
- Higher-order Riesz transforms of Hermite operators on new Besov and Triebel-Lizorkin spaces
- Pseudodifferential operators on mixed-norm Besov and Triebel-Lizorkin spaces
- A new framework for generalized Besov-type and Triebel–Lizorkin-type spaces
- COMPLEX INTERPOLATION ON BESOV-TYPE AND TRIEBEL–LIZORKIN-TYPE SPACES
- Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces on domains
- Atomic decomposition for weighted Besov and Triebel-Lizorkin spaces
- Matrix-weighted Besov spaces
- Traces and extensions of matrix-weighted Besov spaces
- Atomic decompositions of function spaces with Muckenhoupt weights, and some relation to fractal analysis
- Orthonormal bases of compactly supported wavelets
- Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires
- Boundedness results for operators with singular kernels on distribution spaces
- Ten Lectures on Wavelets
- Some observations on Besov and Lizorkin-Triebel spaces.
- Matrix $A_p$ weights via $S$-functions
- An Observation of the Subspaces of $$ \mathcal{S}^{\prime} $$
- Discrete decomposition of homogeneous mixed-norm Besov spaces
- Local means, wavelet bases and wavelet isomorphisms in Besov‐Morrey and Triebel‐Lizorkin‐Morrey spaces
- WEIGHTED BESOV AND TRIEBEL–LIZORKIN SPACES ASSOCIATED WITH OPERATORS AND APPLICATIONS
- Laguerre operator and its associated weighted Besov and Triebel-Lizorkin spaces
- Matrix-weighted Besov spaces and conditions of A_p type for 0 less than p \leq 1
- Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces
- Wavelets and the angle between past and future
- Real-variable characterizations and their applications of matrix-weighted Triebel-Lizorkin spaces
- New atomic decomposition for Besov type space \(\dot{B}^0_{1, 1}\) associated with Schrödinger type operators
- Morrey smoothness spaces: a new approach
- Generalized Besov-type and Triebel–Lizorkin-type spaces
- Matrix-weighted Besov-Triebel-Lizorkin spaces with logarithmic smoothness
- On a bridge connecting Lebesgue and Morrey spaces in view of their growth properties
This page was built for publication: Matrix-weighted Besov-type and Triebel-Lizorkin-type spaces. III: Characterizations of molecules and wavelets, trace theorems, and boundedness of pseudo-differential operators and Calderón-Zygmund operators