Diameter estimates in Kähler geometry. II: Removing the small degeneracy assumption
From MaRDI portal
Publication:6623327
DOI10.1007/S00209-024-03600-XMaRDI QIDQ6623327
Jacob Sturm, Jian Song, Bin Guo, D. H. Phong
Publication date: 23 October 2024
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Kähler manifolds (32Q15) Compact Kähler manifolds: generalizations, classification (32J27) Complex Monge-Ampère operators (32W20) General pluripotential theory (32U15)
Cites Work
- Title not available (Why is that?)
- Heat kernel estimates and lower bound of eigenvalues
- The complex Monge-Ampère equation
- Local noncollapsing for complex Monge-Ampère equations
- Convergence of the Kähler–Ricci Flow on a Kähler–Einstein Fano Manifold
- A Priori L -Estimates for Degenerate Complex Monge-Ampere Equations
- DEGENERATE COMPLEX MONGE–AMPÈRE EQUATIONS OVER COMPACT KÄHLER MANIFOLDS
- On the Upper Estimate of the Heat Kernel of a Complete Riemannian Manifold
- On the ricci curvature of a compact kähler manifold and the complex monge-ampére equation, I
- On \(L^\infty\) estimates for complex Monge-Ampère equations
- Strict positivity of K\"ahler-Einstein currents
- Diameter estimates in Kähler geometry
- Green's functions and complex Monge-Ampère equations
This page was built for publication: Diameter estimates in Kähler geometry. II: Removing the small degeneracy assumption
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6623327)