KdV and mKdV hierarchies and Schur Q-functions
From MaRDI portal
Publication:6628756
DOI10.1007/s11040-024-09493-wMaRDI QIDQ6628756
Publication date: 29 October 2024
Published in: Mathematical Physics, Analysis and Geometry (Search for Journal in Brave)
Symmetric functions and generalizations (05E05) Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.) (37K10) KdV equations (Korteweg-de Vries equations) (35Q53) Soliton equations (35Q51) Soliton solutions (35C08)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Solitons and infinite dimensional Lie algebras
- Compound basis arising from the basic \(A^{(1)}_{1}\)-module
- Transformation groups for soliton equations. Euclidean Lie algebras and reduction of the KP hierarchy
- Schur functions and affine Lie algebras
- Hirota polynomials for the KP and BKP hierarchies
- On soliton equations of exceptional type
- Symmetric functions, noncommutative symmetric functions, and quasisymmetric functions
- Pfaffian identities and Virasoro operators
- Rectangular Schur functions and the basic representation of affine Lie algebras
- Virasoro action on the \(Q\)-functions
- Pure Lie algebraic approach to the modified Korteweg–de Vries equation
- A Determinantal Formula for Skew Q -Functions
- Modular Schur Functions
- Weight vectors of the basic A1(1)-module and the Littlewood-Richardson rule
This page was built for publication: KdV and mKdV hierarchies and Schur Q-functions