Diffraction by a set of collinear cracks on a square lattice: an iterative Wiener-Hopf method
From MaRDI portal
Publication:6632877
DOI10.1016/J.WAVEMOTI.2024.103332MaRDI QIDQ6632877
Anastasia V. Kisil, Raphael Assier, Elena Medvedeva
Publication date: 5 November 2024
Published in: Wave Motion (Search for Journal in Brave)
Cites Work
- Title not available (Why is that?)
- Title not available (Why is that?)
- Fast and accurate numerical methods for solving elliptic difference equations defined on lattices
- Discrete scattering theory: Green's function for a square lattice
- Suppression of spurious frequencies in scattering problems by means of boundary algebraic and combined field equations
- Near-tip field for diffraction on square lattice by rigid constraint
- Acoustic scattering by two parallel slightly staggered rigid plates
- Die Beugung und Polarisation des Lichtes durch einen Spalt. I.
- Exterior diffraction problems for two-dimensional square lattice
- Asymptotics of dynamic lattice Green's functions
- Scattering by two staggered semi-infinite cracks on square lattice: an application of asymptotic Wiener-Hopf factorization
- Diffraction of waves on square lattice by semi-infinite rigid constraint
- Sommerfeld-type integrals for discrete diffraction problems
- Constructive methods for factorization of matrix-functions
- Near-Tip Field for Diffraction on Square Lattice by Crack
- The scattering of sound by two semi-infinite parallel staggered plates. II. Evaluation of the velocity potential for an incident plane wave and an incident duct mode
- Visual Complex Functions
- General Wiener–Hopf Factorization of Matrix Kernels with Exponential Phase Factors
- Dynamics of a bridged crack in a discrete lattice
- Boundary algebraic equations for lattice problems
- The diffraction of stress waves by a plane finite crack in two dimensions: uniqueness and existence
- On the scattering of sound by two semi-infinite parallel staggered plates - I. Explicit matrix Wiener-Hopf factorization
- An Iterative Wiener--Hopf Method for Triangular Matrix Functions with Exponential Factors
- Numerical factorization of a matrix-function with exponential factors in an anti-plane problem for a crack with process zone
- Applying an iterative method numerically to solve n × n matrix Wiener–Hopf equations with exponential factors
- Scattering on a square lattice from a crack with a damage zone
- Wave scattering on lattice structures involving an array of cracks
- Aerodynamic noise from rigid trailing edges with finite porous extensions
- Diffraction of Waves on Square Lattice by Semi-Infinite Crack
- The AAA Algorithm for Rational Approximation
- Diffraction of Acoustic Waves by a Wedge of Point Scatterers
This page was built for publication: Diffraction by a set of collinear cracks on a square lattice: an iterative Wiener-Hopf method
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6632877)