The Klein quartic maximizes the multiplicity of the first positive eigenvalue of the Laplacian
From MaRDI portal
Publication:6633904
DOI10.4310/JDG/1727712888MaRDI QIDQ6633904
Bram Petri, Maxime Fortier Bourque
Publication date: 6 November 2024
Published in: Journal of Differential Geometry (Search for Journal in Brave)
Spectral problems; spectral geometry; scattering theory on manifolds (58J50) Spectral theory; eigenvalue problems on manifolds (58C40)
Cites Work
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Systole and \(\lambda_{2g-2}\) of closed hyperbolic surfaces of genus \(g\)
- Sur la multiplicité de la premiere valeur propre des surfaces riemanniennes
- Classifying finite group actions on surfaces of low genus
- Über den ersten Eigenwert des Laplace-Operators auf ausgewählten Beispielen kompakter Riemannscher Flächen
- On the lowest eigenvalue of the Hodge Laplacian on compact, negatively curved domains
- For every hyperbolic surface of genus \(g,\lambda_{2g-2}>1/4\)
- Sur la multiplicité de la première valeur propre non nulle du Laplacien. (On the multiplicity of the first nonzero eigenvalue of the Laplacian)
- Sur la multiplicité de la première valeur propre d'une surface de Riemann à courbure constante. (On the multiplicity of the first eigenvalue of a Riemannian surface of constant curvature)
- On the periodic orbits of a strongly chaotic system
- Eigenvalue comparison theorems and its geometric applications
- Über die Eigenwerte des Laplace-Operators auf kompakten Riemannschen Flächen
- Eigenfunctions and nodal sets
- Riemann surfaces with shortest geodesic of maximal length
- Systoles of two extremal Riemann surfaces
- New upper bounds on sphere packings. I
- Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian
- Local maxima of the systole function
- On the first eigenvalue of the Laplacian on compact surfaces of genus three
- Periodic orbits on the regular hyperbolic octagon
- The first eigenvalue of the Laplacian on orientable surfaces
- The geometry of Klein's Riemann surface
- Construction de laplaciens dont une partie finie du spectre est donnée
- Arb: Efficient Arbitrary-Precision Midpoint-Radius Interval Arithmetic
- Lower bounds for the first Dirichlet eigenvalue of the Laplacian for domains in hyperbolic space
- SOLUTION OF THE HEAWOOD MAP-COLORING PROBLEM
- Geometry and spectra of compact Riemann surfaces
- MULTIPLE EIGENVALUES OF THE LAPLACE OPERATOR
- Automorphic spectra and the conformal bootstrap
This page was built for publication: The Klein quartic maximizes the multiplicity of the first positive eigenvalue of the Laplacian
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6633904)