Poisson and Szegö kernel scaling asymptotics on Grauert tube boundaries (after Zelditch, Chang and Rabinowitz)
From MaRDI portal
Publication:6634293
DOI10.1007/s40574-024-00412-zMaRDI QIDQ6634293
Publication date: 7 November 2024
Published in: Bollettino dell'Unione Matematica Italiana (Search for Journal in Brave)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The Poisson transform on a compact real analytic Riemannian manifold
- Scaling limit for the kernel of the spectral projector and remainder estimates in the pointwise Weyl law
- Index and dynamics of quantized contact transformations
- Quelques propriétés fondamentales des ensembles analytiques-réels
- Stein manifolds with compact symmetric center
- Complex zeros of real ergodic eigenfunctions
- Grauert tubes and the homogeneous Monge-Ampère equation
- Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundle of Riemannian manifolds
- Complex structures on tangent bundles of Riemannian manifolds
- Grauert tubes and the homogeneous Monge-Ampère equation. II
- The spectrum of positive elliptic operators and periodic bicharacteristics
- Universality and scaling of correlations between zeros on complex manifolds
- Local scaling asymptotics for the Gutzwiller trace formula in Berezin-Toeplitz quantization
- Spectral and eigenfunction asymptotics in Toeplitz quantization
- Curvatures of Monge-Ampère foliations and parabolic manifolds
- Scaling asymptotics for Szegő kernels on Grauert tubes
- Toeplitz operators in \(n\)-dimensions
- Central limit theorem for spectral partial Bergman kernels
- Interface asymptotics of partial Bergman kernels around a critical level
- A proof of a result of L. Boutet de Monvel
- Pointwise Weyl law for partial Bergman kernels
- Ergodicity and intersections of nodal sets and geodesics on real analytic surfaces
- On the analytic continuation of the Poisson kernel
- Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds
- Local trace formulae and scaling asymptotics for general quantized Hamiltonian flows
- Eigenfunctions of the Laplacian on a Riemannian Manifold
- Local Asymptotics for Slowly Shrinking Spectral Bands of a Berezin-Toeplitz Operator
- Riemannian Geometry
- LOCAL TRACE FORMULAE AND SCALING ASYMPTOTICS IN TOEPLITZ QUANTIZATION
- On the Weyl law for Toeplitz operators
- The Spectral Theory of Toeplitz Operators. (AM-99)
- Estimates for the \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop \partial \limits^ - _b $\end{document} complex and analysis on the heisenberg group
- Parametrices and estimates for the $\bar \partial _b$ complex on strongly pseudoconvex boundaries
- Intrinsic microlocal analysis and inversion formulae for the heat equation on compact real-analytic riemannian manifolds
- Eigenfunctions and Nodal Sets
- Pluri-potential theory on Grauert tubes of real analytic Riemannian manifolds, I
- Symplectic geometry and the uniqueness of Grauert tubes
This page was built for publication: Poisson and Szegö kernel scaling asymptotics on Grauert tube boundaries (after Zelditch, Chang and Rabinowitz)