Variational approach to a class of second order Hamiltonian systems on time scales
DOI10.1007/S10440-011-9649-ZzbMath1238.34159OpenAlexW1992518298MaRDI QIDQ663436
Publication date: 15 February 2012
Published in: Acta Applicandae Mathematicae (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10440-011-9649-z
Nonlinear boundary value problems for ordinary differential equations (34B15) Periodic solutions to ordinary differential equations (34C25) Abstract critical point theory (Morse theory, Lyusternik-Shnirel'man theory, etc.) in infinite-dimensional spaces (58E05) Applications of variational problems in infinite-dimensional spaces to the sciences (58E50) Dynamic equations on time scales or measure chains (34N05)
Related Items (8)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Periodic solutions for a class of non-autonomous Hamiltonian systems
- Existence of solutions for a class of damped vibration problems on time scales
- Existence of positive periodic solutions for functional differential equations with impulse effects on time scales
- Analysis on measure chains - a unified approach to continuous and discrete calculus
- Existence of positive solutions for singular boundary value problem on time scales
- Existence of weak solutions of two-point boundary value problems for second-order dynamic equations on time scales
- Sobolev's spaces on time scales and its applications to a class of second order Hamiltonian systems on time scales
- Critical point theory and Hamiltonian systems
- Basic calculus on time scales and some of its applications
- Integration on time scales.
- Existence theory for positive solutions to one-dimensional \(p\)-Laplacian boundary value problems on time scales
- Existence and approximation of extremal solutions to first-order infinite systems of functional dynamic equations
- Basic properties of Sobolev's spaces on time scales
- Periodic solutions for a neutral nonlinear dynamical equation on a time scale
- Eigenfunction expansions in \(L^{2}\) spaces for boundary value problems on time-scales
- Deformation theorems on non-metrizable vector spaces and applications to critical point theory
This page was built for publication: Variational approach to a class of second order Hamiltonian systems on time scales