Towards a theory of homotopy structures for differential equations: first definitions and examples
From MaRDI portal
Publication:6635657
DOI10.1016/j.jde.2024.08.057MaRDI QIDQ6635657
Jean-Pierre Magnot, Vladimir Rubtsov, Enrique G. Reyes
Publication date: 12 November 2024
Published in: Journal of Differential Equations (Search for Journal in Brave)
formalityMassey productsdifferential graded algebra\(A_{\infty}\)-algebrainfinite jet bundleequation manifold
Jets in global analysis (58A20) Spectra with additional structure ((E_infty), (A_infty), ring spectra, etc.) (55P43) Massey products (55S30) Dynamical system aspects of infinite-dimensional Hamiltonian and Lagrangian systems (37Kxx)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Variational tricomplex, global symmetries and conservation laws of gauge systems
- The \({\mathcal C}\)-spectral sequence, Lagrangian formalism, and conservation laws. II: The nonlinear theory
- \(A\)-infinity structure on Ext-algebras.
- Additional symmetries of the nonlinear Schrödinger equation
- Geometry of conservation laws for a class of parabolic PDE's. II: Normal forms for equations with conservation laws
- A global version of the inverse problem of the calculus of variations
- Some new cohomological invariants for nonlinear differential equations
- Infinitesimal computations in topology
- The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane
- Geometry of conservation laws for a class of parabolic partial differential equations
- Characteristic cohomology of \(p\)-form gauge theories
- Leçons sur l'intégration des équations aux dérivées partielles du second ordre à deux variables indépendantes. Tome II: La méthode de Laplace. Les systèmes en involutions. La méthode de M. Darboux. Les équations de la première classe. Transformations des équations du second ordre. Généralisations diverses. 2 Notes.
- Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal. Teil 1 u. 2.
- Geometric integrability of the Camassa-Holm equation
- The variational bi-complex for systems of semi-linear hyperbolic PDEs in three variables
- Additional symmetries for integrable equations and conformal algebra representation
- Characteristic cohomology of differential systems. II: Conservation laws for a class of parabolic equations
- Conservation laws and the variational bicomplex for second-order scalar hyperbolic equations in the plane
- Cohomological structure in soliton equations and Jacobian varieties
- \(A_\infty\) structures and Massey products
- Integrability criteria for systems of nonlinear partial differential equations
- Matric Massey products
- Algebra+Homotopy=Operad
- Local conservation laws of second-order evolution equations
- ON THE HOMOLOGY THEORY OF FIBRE SPACES
- CONTACT GEOMETRY AND NON-LINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS
- The Lagrange complex
- Algebra of pseudodifferential operators and symmetries of equations in the Kadomtsev–Petviashvili hierarchy
- Massey products, A∞-algebras, differential equations, and Chekanov homology
- Variational sequences
- Overdetermined systems of linear partial differential equations
- Homotopy Associativity of H-Spaces. I
- Lagrangian Multiforms for Kadomtsev–Petviashvili (KP) and the Gelfand–Dickey Hierarchy
- Vinogradov’s cohomological geometry of partial differential equations
- The Homotopy Momentum Map of General Relativity
This page was built for publication: Towards a theory of homotopy structures for differential equations: first definitions and examples