Multipoint Geronimus and Schur parameters of measures on a circle and on a line
From MaRDI portal
Publication:6640552
DOI10.4213/sm10088eMaRDI QIDQ6640552
Publication date: 20 November 2024
Published in: Sbornik: Mathematics (Search for Journal in Brave)
orthogonal rational functionscontinued fractionsCarathéodory and Nevanlinna functionsGeronimus and Schur parameters
Integration, integrals of Cauchy type, integral representations of analytic functions in the complex plane (30E20) Spaces of bounded analytic functions of one complex variable (30H05) Boundary value problems in the complex plane (30E25) Continued fractions; complex-analytic aspects (30B70)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Multipoint Schur algorithm and orthogonal rational functions. I: Convergence properties
- Capacity of a compact set in a logarithmic potential field
- Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. I, II.
- Über Potenzreihen mit positivem, reellem Teil im Einheitskreis.
- Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III.
- An analogue of Polya's theorem for piecewise holomorphic functions
- ON ASYMPTOTIC PROPERTIES OF POLYNOMIALS ORTHOGONAL ON THE CIRCLE WITH WEIGHTS NOT SATISFYING SZEGÖ'S CONDITION
- ON THE ASYMPTOTICS OF THE RATIO OF ORTHOGONAL POLYNOMIALS
- Necessary and sufficient conditions for extending a function to a Schur function
- Schur’s criterion for formal power series
- Theory of Reproducing Kernels
- Schur's algorithm, orthogonal polynomials, and convergence of Wall's continued fractions in \(L^2(\mathbb{T})\).
- On the solvability of the Nevanlinna-Pik interpolation problem;О разрешимости интерполяционной проблемы Неванлинны-Пика
This page was built for publication: Multipoint Geronimus and Schur parameters of measures on a circle and on a line