The a posteriori error estimates of the FE approximation of defective eigenvalues for non-self-adjoint eigenvalue problems
From MaRDI portal
Publication:6640595
DOI10.1137/23m162065xMaRDI QIDQ6640595
Publication date: 20 November 2024
Published in: SIAM Journal on Numerical Analysis (Search for Journal in Brave)
a posteriori error estimatesfinite-element methodclustered eigenvaluesdefective eigenvaluenon-self-adjoint eigenvalue problem
Error bounds for boundary value problems involving PDEs (65N15) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30) Numerical methods for eigenvalue problems for boundary value problems involving PDEs (65N25)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- An oscillation-free adaptive FEM for symmetric eigenvalue problems
- An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations
- An adaptive homotopy approach for non-selfadjoint eigenvalue problems
- Robust error estimates for approximations of non-self-adjoint eigenvalue problems
- A posteriori error estimators for convection-diffusion eigenvalue problems
- The adaptive immersed interface finite element method for elliptic and Maxwell interface problems
- Convergence and optimal complexity of adaptive finite element eigenvalue computations
- Approximation in variationally posed eigenvalue problems
- Adaptive finite element methods for elliptic equations with non-smooth coefficients
- A type of adaptive \(C^0\) non-conforming finite element method for the Helmholtz transmission eigenvalue problem
- An optimal adaptive FEM for eigenvalue clusters
- Finite Element Methods for Eigenvalue Problems
- A Review of Unified A Posteriori Finite Element Error Control
- Discontinuous Finite Element Methods for Interface Problems: Robust A Priori and A Posteriori Error Estimates
- Optimal convergence of adaptive FEM for eigenvalue clusters in mixed form
- ERROR ESTIMATION OF EIGENFREQUENCIES FOR ELASTICITY AND SHELL PROBLEMS
- A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems
- Adaptive Discontinuous Galerkin Methods for Eigenvalue Problems Arising in Incompressible Fluid Flows
- Convergence and Optimality of Higher-Order Adaptive Finite Element Methods for Eigenvalue Clusters
- An optimal control approach to a posteriori error estimation in finite element methods
- Convergence and quasi-optimal complexity of adaptive finite element computations for multiple eigenvalues
- Finite Element Interpolation of Nonsmooth Functions Satisfying Boundary Conditions
- Spectral Approximation for Compact Operators
- Error Estimates for Adaptive Finite Element Computations
- A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems
- A Multilevel Correction Type of Adaptive Finite Element Method for Eigenvalue Problems
- Adaptive FE Eigenvalue Computation with Applications to Hydrodynamic Stability
- Adaptive Finite Element Method for the Maxwell Eigenvalue Problem
- Arnold--Winther Mixed Finite Elements for Stokes Eigenvalue Problems
- Convergence of Adaptive Finite Element Methods
- A POSTERIORI ERROR ESTIMATORS FOR MIXED APPROXIMATIONS OF EIGENVALUE PROBLEMS
- A Convergent Adaptive Algorithm for Poisson’s Equation
- Finite Elements II
- Guaranteed a posteriori bounds for eigenvalues and eigenvectors: Multiplicities and clusters
- Benchmark Computation of Eigenvalues with Large Defect for Non-Self-adjoint Elliptic Differential Operators
- A posteriori error control for finite element approximations of elliptic eigenvalue problems
- The a posteriori error estimates and an adaptive algorithm of the FEM for transmission eigenvalues for anisotropic media
- An Introductory Review on A Posteriori Error Estimation in Finite Element Computations
This page was built for publication: The a posteriori error estimates of the FE approximation of defective eigenvalues for non-self-adjoint eigenvalue problems