Optimal regularity for the 2D Euler equations in the Yudovich class
From MaRDI portal
Publication:6641664
DOI10.1016/j.matpur.2024.103631MaRDI QIDQ6641664
Christian Seis, Nicola De Nitti, David A. Meyer
Publication date: 21 November 2024
Published in: Journal de Mathématiques Pures et Appliquées. Neuvième Série (Search for Journal in Brave)
Euler equationstransport equationLittlewood-Paleynon smooth vector fieldspropagation of regularityBahouri-Chemin's vortex patch
Smoothness and regularity of solutions to PDEs (35B65) PDEs in connection with fluid mechanics (35Q35) Vortex flows for incompressible inviscid fluids (76B47) Existence, uniqueness, and regularity theory for incompressible inviscid fluids (76B03)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Small scale creation for solutions of the incompressible two-dimensional Euler equation
- Transport equation and Cauchy problem for BV vector fields
- Differentiability properties of the flow of 2d autonomous vector fields
- Ordinary differential equations, transport theory and Sobolev spaces
- Uniqueness of signed measures solving the continuity equation for Osgood vector fields
- Remarks on the breakdown of smooth solutions for the 3-D Euler equations
- On nonstationary flows of viscous and ideal fluids in \(L^ p_ s({\mathbb{R}}^ 2)\)
- Hydrodynamics in Besov spaces
- Mathematical theory of incompressible nonviscous fluids
- Transport equations due to the non-Lipschitzian vector fields and fluid mechanics
- Linear transport equations with initial values in Sobolev spaces and application to the Navier-Stokes equations
- Über die Bewegung einer Flüssigkeit, die in ein seinen Ort änderndes Gefäß eingeschlossen ist.
- Log-Lipschitz regularity and uniqueness of the flow for a field in \((W_{\text{loc}}^{n/p+1,p}(\mathbb{R}^n))^n\)
- Persistence of the incompressible Euler equations in a Besov space \(\mathbf B_{1,1}^{d+1}(\mathbb R^d)\)
- Ill-posedness for the incompressible Euler equations in critical Sobolev spaces
- A quantitative theory for the continuity equation
- Sobolev regular flows of non-Lipschitz vector fields
- Orlicz spaces and generalized Orlicz spaces
- Singular integrals and a problem on mixing flows
- Über einige Existenzprobleme der Hydrodynamik. IV: Stetigkeitssätze. Eine Begründung der Helmholtz-Kirchhoffschen Theorie geradliniger Wirbelfäden.
- Un théorème sur l'existence du mouvement plan d'un fluide parfait, homogene, incompressible, pendant un temps infiniment long
- Über die unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten inkompressiblen Flüssigkeit
- Remarks on the Euler equation
- Sobolev estimates for solutions of the transport equation and ODE flows associated to non-Lipschitz drifts
- Differentiability in measure of the flow associated with a nearly incompressible BV vector field
- Sharp regularity estimates for solutions of the continuity equation drifted by Sobolev vector fields
- A simple ill-posedness proof for incompressible Euler equations in critical Sobolev spaces
- Small scale creation in active scalars
- Loss of regularity for the 2D Euler equations
- Loss of regularity for the continuity equation with non-Lipschitz velocity field
- \(L^\infty\) ill-posedness for a class of equations arising in hydrodynamics
- Quantitative regularity estimates for compressible transport equations
- Convergence of numerical approximations to non-linear continuity equations with rough force fields
- Strong illposedness of the incompressible Euler equation in integer \(C^m\) spaces
- Estimates in Besov spaces for transport and transport-diffusion equations with almost Lipschitz coefficients
- Renormalized solutions of some transport equations with partially \(W^{1,1}\) velocities and applications
- A lemma and a conjecture on the cost of rearrangements
- Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces
- Groups of diffeomorphisms and the motion of an incompressible fluid
- Nonstationary flows of viscous and ideal fluids in \(R^3\)
- \(H^p\) spaces of several variables
- Vorticity and Incompressible Flow
- Existence of Solution for the Euler Equations in a Critical Besov Space (ℝn)
- Estimates and regularity results for the DiPerna-Lions flow
- Ill-posedness of the basic equations of fluid dynamics in Besov spaces
- Continuity of the solution map of the Euler equations in Hölder spaces and weak norm inflation in Besov spaces
- Incompressible flows of an ideal fluid with vorticity in borderline spaces of besov type1
- Regularity estimates for the flow of BV autonomous divergence-free vector fields in R2
- Strong Ill-Posedness of the 3D Incompressible Euler Equation in Borderline Spaces
- Classical Fourier Analysis
- Fractional Integration in Orlicz Spaces. I
- Very weak notions of differentiability
- On the Euler equations of incompressible fluids
- Classical flows of vector fields with exponential or sub-exponential summability
- Exponential Mixing by Shear Flows
- Propagation of regularity for transport equations. A Littlewood-Paley approach
- Instantaneous gap loss of Sobolev regularity for the 2D incompressible Euler equations
This page was built for publication: Optimal regularity for the 2D Euler equations in the Yudovich class