A note on maximal non-Noetherian subrings of a domain
DOI10.1007/S13366-011-0055-5zbMath1237.13019OpenAlexW2089178673MaRDI QIDQ664208
Publication date: 29 February 2012
Published in: Beiträge zur Algebra und Geometrie (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s13366-011-0055-5
Integral closure of commutative rings and ideals (13B22) Commutative Noetherian rings and modules (13E05) Valuations and their generalizations for commutative rings (13A18) Ideals and multiplicative ideal theory in commutative rings (13A15) Extension theory of commutative rings (13B02) Integral dependence in commutative rings; going up, going down (13B21) Dimension theory, depth, related commutative rings (catenary, etc.) (13C15) Rings of fractions and localization for commutative rings (13B30)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Universally catenarian domains of the type \(A + I\)
- Strong S-domains
- Sur les S-domaines forts de Kaplansky. (On strong Kaplansky S-domains)
- Universally catenarian integral domains
- Construction B, I, D et anneaux localement ou residuellement de Jaffard. (B, I, D construction and locally or residually Jaffard rings)
- On universally catenarian pairs
- Pullbacks and universal catenarity
- On Jaffard domains
- Couples d'anneaux partageant un idéal. (Couples of rings sharing an ideal)
- A characterization of Prüfer domains in terms of polynomials
- Residually algebraic pairs of rings
- Maximal non-Jaffard subrings of a field
- A counterexample for a conjecture about the catenarity of polynomial rings.
- Maximal non-Noetherian subrings of a domain.
- On questions related to stably strong S-domains
- Universally Catenarian Domains of D + M Type
- When Is (K + I,K[y1,…,yt) a Mori Pair?]
- Intermediate rings between D+I And K [y1,…,yt]
- ON MAXIMAL NON-ACCP SUBRINGS
- Pairs of Domains Where all Intermediate Domains are Noetherian
- Intersection de produits fibres et formule de la dimension
- Universally catenarian and going-down pairs of rings
This page was built for publication: A note on maximal non-Noetherian subrings of a domain