When do Gibbsian phase averages and Boltzmannian equilibrium values agree?
From MaRDI portal
Publication:6642617
DOI10.1016/j.shpsb.2020.05.003MaRDI QIDQ6642617
Publication date: 25 November 2024
Published in: Studies in History and Philosophy of Science. Part B. Studies in History and Philosophy of Modern Physics (Search for Journal in Brave)
Foundations of equilibrium statistical mechanics (82B03) Foundations of time-dependent statistical mechanics (82C03) Physics (00A79)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Boltzmann and Gibbs: an attempted reconciliation
- The foundational role of ergodic theory
- The quantitative content of statistical mechanics
- The physics and mathematics of the second law of thermodynamics
- On the extension of phenomenological thermodynamics to fluctuation phenomena
- The dynamical theory of gases. \(2^{\text{d}}\) edition.
- Elementary principles in statistical mechanics developed with especial reference to the rational foundation of thermodynamics.
- Ueber die Beziehung zwischen dem zweiten Hauptsatz der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung, respective den Sätzen über Wärmegleichgewicht.
- Reconceptualising equilibrium in Boltzmannian statistical mechanics and characterising its existence
- Justifying typicality measures of Boltzmannian statistical mechanics and dynamical systems
- Numerical study of the 6-vertex model with domain wall boundary conditions.
- The principles of statistical mechanics.
- The Oxford Handbook of Probability and Philosophy
- An Introduction to Statistical Mechanics and Thermodynamics
- Chaos and chance. An introduction to stochastic aspects of dynamics
This page was built for publication: When do Gibbsian phase averages and Boltzmannian equilibrium values agree?