On outer bi-Lipschitz extensions of linear Johnson-Lindenstrauss embeddings of subsets of \(\mathbb{R}^N\)
From MaRDI portal
Publication:6644042
DOI10.1007/s00211-024-01437-4MaRDI QIDQ6644042
Mark A. Iwen, Rafael Chiclana, Mark Philip Roach
Publication date: 27 November 2024
Published in: Numerische Mathematik (Search for Journal in Brave)
Numerical aspects of computer graphics, image analysis, and computational geometry (65D18) Embeddings of discrete metric spaces into Banach spaces; applications in topology and computer science (46B85) Lipschitz and coarse geometry of metric spaces (51F30) Metric embeddings as related to computational problems and algorithms (68R12)
Cites Work
- Terminal embeddings
- Über die zusammenziehende und Lipschitzsche Transformationen.
- Graph Implementations for Nonsmooth Convex Programs
- Compressed sensing and best 𝑘-term approximation
- Curvature Measures
- Extensions of Lipschitz mappings into a Hilbert space
- High-Dimensional Probability
- Optimal terminal dimensionality reduction in Euclidean space
- Nonlinear dimension reduction via outer Bi-Lipschitz extensions
- Zur Theorie der Gesellschaftsspiele.
- Lower bounds on the low-distortion embedding dimension of submanifolds of \(\mathbb{R}^n\)
- On fast Johnson-Lindenstrauss embeddings of compact submanifolds of \(\mathbb{R}^N\) with boundary
This page was built for publication: On outer bi-Lipschitz extensions of linear Johnson-Lindenstrauss embeddings of subsets of \(\mathbb{R}^N\)