On a new subclass of bi-univalent analytic functions characterized by \((\mathcal{P},\mathcal{Q})\)-Lucas polynomial coefficients via Sălăgean differential operator
From MaRDI portal
Publication:6644792
DOI10.1007/978-981-97-3238-8_8MaRDI QIDQ6644792
Publication date: 27 November 2024
differential operatorbi-univalent functionscoefficient bounds\((\mathcal{P}, \mathcal{Q})\)-Lucas polynomials
Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.) (30C45) Operator theory (47-XX) Approximations and expansions (41-XX)
Cites Work
- An unified approach to the Fekete-Szegő problem
- New subclasses of bi-univalent functions
- On schlicht functions
- Fekete-Szegő problem for starlike and convex functions of complex order
- Certain subclasses of analytic and bi-univalent functions
- A proof of the Bieberbach conjecture
- Univalent functions. Selected topics
- Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I.
- Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln.
- Some remarks on conformal representation.
- Über die Uniformisierung beliebiger analytischer Kurven.
- Fekete-Szegö inequalities for certain classes of biunivalent functions
- Some properties of the \((p,q)\)-Fibonacci and \((p,q)\)-Lucas polynomials
- The Fekete-Szegő problem for a class of analytic functions defined by Dziok-Srivastava operator
- Coefficient inequalities for pseudo subclasses of analytical functions related to Petal type domains defined by error function
- A new characterization of \((P, Q)\)-Lucas polynomial coefficients of the bi-univalent function class associated with \(q\)-analogue of Noor integral operator
- Faber polynomial coefficient estimates for analytic bi-close-to-convex functions
- On the Fekete-Szegő problem for classes of bi-univalent functions
- Coefficient estimates for certain classes of bi-univalent functions
- On the coefficients of univalent functions
- A proof of the Bieberbach conjecture for the sixth coefficient
- The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in \(| z| < 1\)
- A proof of the Bieberbach conjecture for the fifth coefficient
- Eine Bemerkung über ungerade schlichte Funktionen.
- A survey of the developement of the theory of schlicht functions
- The coefficients of schlicht functions. II
- The fekete-szegö-problem for a subclass of close-to-convex functions
- Fekete-Szego Inequalities for Close-to-Convex Functions
- The class of Lucas-Lehmer polynomials
- Fibonacci and Lucas Numbers With Applications
- Fekete–Szegö problem for certain subclasses of analytic functions
- The Fekete-Szegö Problem for a Generalized Subclass of Analytic Functions
- A new approach to the bi-univalent analytic functions connected with q-analogue of Noor integral operator
- On a Coefficient Problem for Bi-Univalent Functions
- A Coefficient Inequality for Certain Classes of Analytic Functions
- On the Bieberbach conjecture for the sixth coefficient
- On Successive Coefficients of Univalent Functions
- On the Fekete-Szegö problem
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: On a new subclass of bi-univalent analytic functions characterized by \((\mathcal{P},\mathcal{Q})\)-Lucas polynomial coefficients via Sălăgean differential operator