Gaussian quadrature rules with exponential weights on \((-1,1)\)
DOI10.1007/s00211-011-0417-9zbMath1244.65238OpenAlexW1992955659MaRDI QIDQ664535
Incoronata Notarangelo, Giuseppe Mastroianni, Maria Carmela De Bonis
Publication date: 2 March 2012
Published in: Numerische Mathematik (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00211-011-0417-9
convergenceFredholm integral equationLagrange interpolationNyström methodGaussian quadrature rulesPollaczek-type polynomials
Numerical methods for integral equations (65R20) Approximate quadratures (41A55) Numerical quadrature and cubature formulas (65D32) Fredholm integral equations (45B05)
Related Items (6)
Uses Software
Cites Work
- Lagrange interpolation in weighted Besov spaces
- Gaussian rules on unbounded intervals
- Polynomial inequalities and embedding theorems with exponential weights on \((-1, 1)\)
- On interpolation. I. Quadrature- and mean-convergence in the Lagrange- interpolation
- Interpolation Processes
- A Lagrange-type projector on the real line
- Christoffel functions and orthogonal polynomials for exponential weights on [-1,1]
- The Numerical Solution of Integral Equations of the Second Kind
- Truncated Quadrature Rules Over $(0,\infty)$ and Nyström-Type Methods
- Orthogonal polynomials for exponential weights
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Gaussian quadrature rules with exponential weights on \((-1,1)\)