A generalized score confidence interval for a binomial proportion
From MaRDI portal
Publication:665025
DOI10.1016/j.jspi.2011.09.010zbMath1428.62122OpenAlexW2040339210MaRDI QIDQ665025
Publication date: 5 March 2012
Published in: Journal of Statistical Planning and Inference (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jspi.2011.09.010
confidence intervalcoverage probabilitybinomial distributionstandard deviationaverage excepted lengthmean absolute errorscore interval
Related Items (8)
A generalized Agresti-Coull type confidence interval for a binomial proportion ⋮ A weighted score confidence interval for a binomial proportion ⋮ A simple and improved score confidence interval for a single proportion ⋮ A comparison of some confidence intervals for a binomial proportion based on a shrinkage estimator ⋮ Two-tailed asymptotic inferences for a proportion ⋮ One-sided asymptotic inferences for a proportion ⋮ Matching pseudocounts for interval estimation of binomial and Poisson parameters ⋮ An improved score interval with a modified midpoint for a binomial proportion
Cites Work
- Unnamed Item
- Unnamed Item
- Interval estimation for a binomial proportion. (With comments and a rejoinder).
- Confidence intervals for a binomial proportion and asymptotic expansions
- Smallest confidence intervals for one binomial proportion
- Simple and Effective Confidence Intervals for Proportions and Differences of Proportions Result from Adding Two Successes and Two Failures
- Confidence Intervals for a Binomial Parameter Based on Multistage Tests
- Binomial Confidence Intervals
This page was built for publication: A generalized score confidence interval for a binomial proportion