Suppression of chemotactic singularity via viscous flow with large buoyancy
DOI10.1137/24m1669001MaRDI QIDQ6652065
Publication date: 12 December 2024
Published in: SIAM Journal on Mathematical Analysis (Search for Journal in Brave)
incompressible fluidchemotaxisglobal well-posednessaggregation-diffusion equationblow-up suppressionelliptic-parabolic Keller-Segel equation
Asymptotic behavior of solutions to PDEs (35B40) PDEs in connection with fluid mechanics (35Q35) Navier-Stokes equations for incompressible viscous fluids (76D05) Initial-boundary value problems for second-order parabolic equations (35K20) Existence, uniqueness, and regularity theory for incompressible viscous fluids (76D03) Cell movement (chemotaxis, etc.) (92C17) Quasilinear parabolic equations (35K59)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Suppression of chemotactic explosion by mixing
- A coupled Keller-Segel-Stokes model: global existence for small initial data and blow-up delay
- Existence, uniqueness and Lipschitz dependence for Patlak-Keller-Segel and Navier-Stokes in \(\mathbb R^2\) with measure-valued initial data
- Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior
- On singularity formation of a nonlinear nonlocal system
- Model for chemotaxis
- The parabolic-parabolic Keller-Segel model in \(\mathbb R^2\)
- Note on loss of regularity for solutions of the 3-D incompressible Euler and related equations
- From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I
- Global well-posedness and blow-up for the 2-D Patlak-Keller-Segel equation
- On the de Gregorio modification of the Constantin-Lax-Majda model
- Suppressing chemotactic blow-up through a fast splitting scenario on the plane
- From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II
- Suppressing blow-up by gradient-dependent flux limitation in a planar Keller-Segel-Navier-Stokes system
- Finite-time singularity formation for \(C^{1,\alpha}\) solutions to the incompressible Euler equations on \(\mathbb{R}^3\)
- Spectral analysis for singularity formation of the two dimensional Keller-Segel system
- Diffusion and mixing in fluid flow
- Suppression of blow-up in Patlak-Keller-Segel-Navier-Stokes system via the Couette flow
- Bacterial swimming and oxygen transport near contact lines
- Random walk with persistence and external bias
- Global Existence and Temporal Decay in Keller-Segel Models Coupled to Fluid Equations
- Stability of Some Mechanisms of Chemotactic Aggregation
- Suppression of blow-up in parabolic–parabolic Patlak–Keller–Segel via strictly monotone shear flows
- On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition
- Infinite time aggregation for the critical Patlak‐Keller‐Segel model in ℝ2
- On the stabilizing effect of convection in three-dimensional incompressible flows
- On Explosions of Solutions to a System of Partial Differential Equations Modelling Chemotaxis
- On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions
- Suppression of Blow-Up in Patlak--Keller--Segel Via Shear Flows
- Point Dynamics in a Singular Limit of the Keller--Segel Model 1: Motion of the Concentration Regions
- Point Dynamics in a Singular Limit of the Keller--Segel Model 2: Formation of the Concentration Regions
- Global Solutions to the Coupled Chemotaxis-Fluid Equations
- Convection-induced singularity suppression in the Keller-Segel and other non-linear PDEs
- Refined Description and Stability for Singular Solutions of the 2D Keller‐Segel System
- Large Mass Global Solutions for a Class ofL1-Critical Nonlocal Aggregation Equations and Parabolic-Elliptic Patlak-Keller-Segel Models
- On the Inviscid Limit for Two-Dimensional Incompressible Flow with Navier Friction Condition
- Global Large-Data Solutions in a Chemotaxis-(Navier–)Stokes System Modeling Cellular Swimming in Fluid Drops
- Lower bounds on the mix norm of passive scalars advected by incompressible enstrophy-constrained flows
- Navier--Stokes Equations with Navier Boundary Conditions for a Bounded Domain in the Plane
- The 8π‐problem for radially symmetric solutions of a chemotaxis model in the plane
- On the fast spreading scenario
- Enhanced Dissipation and Blow-Up Suppression in a Chemotaxis-Fluid System
- Suppression of chemotactic blowup by strong buoyancy in Stokes-Boussinesq flow with cold boundary
This page was built for publication: Suppression of chemotactic singularity via viscous flow with large buoyancy