Strong approximation and Hasse principle for integral quadratic forms over affine curves
From MaRDI portal
Publication:6653257
DOI10.4064/AA240111-9-7MaRDI QIDQ6653257
Yong Hu, Yisheng Tian, Jing Liu
Publication date: 16 December 2024
Published in: Acta Arithmetica (Search for Journal in Brave)
Sums of squares and representations by other particular quadratic forms (11E25) Quadratic forms over general fields (11E04) Classical groups (11E57) Linear algebraic groups over adèles and other rings and schemes (20G35)
Cites Work
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Colliot-Thélène's conjecture and finiteness of u-invariants
- The \(u\)-invariant of the function fields of \(p\)-adic curves
- Klassenzahlen indefiniter quadratischer Formen in drei oder mehr Veränderlichen
- Applications of patching to quadratic forms and central simple algebras
- Strong approximation for semi-simple homogenenous groups over the field of functions of a complex algebraic curve
- Patching and local-global principles for homogeneous spaces over function fields of \(p\)-adic curves
- On representations of spinor genera. II
- A new Waring's problem with squares of linear forms.
- Galois cohomology of the classical groups over fields of cohomological dimension \(\leq 2\)
- Introduction to quadratic forms
- The period-index problem for real surfaces
- On the representation of a quadratic form as a sum of squares of linear forms.
- Theorie der quadratischen Formen in beliebigen Körpern.
- On quasi algebraic closure
- The Integral Representations of Quadratic Forms Over Local Fields
- Brauer–Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms
- Representations of positive definite quadratic forms.
- Representations of indefinite quadratic forms
- On representations of spinor genera
- On indefinite and potentially universal quadratic forms over number fields
- On unique factorization domains
This page was built for publication: Strong approximation and Hasse principle for integral quadratic forms over affine curves
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6653257)