On the structure of the infinitesimal generators of scalar one-dimensional semigroups with discrete Lyapunov functionals
From MaRDI portal
Publication:6656124
DOI10.1007/S40863-023-00400-9MaRDI QIDQ6656124
Publication date: 2 January 2025
Published in: São Paulo Journal of Mathematical Sciences (Search for Journal in Brave)
delay differential equationspartial differential equationsinfinitesimal generatorsdiscrete Lyapunov functions
Cites Work
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Nonlinear Sturm global attractors: unstable manifold decompositions as regular CW-complexes
- A permutation characterization of Sturm global attractors of Hamiltonian type
- A sequence of order relations: Encoding heteroclinic connections in scalar parabolic PDE
- Lap number properties for \(p\)-Laplacian problems investigated by Lyapunov methods
- Connecting orbits in scalar reaction diffusion equations. II: The complete solution
- Transversality between invariant manifolds of periodic orbits for a class of monotone dynamical systems
- Semigroups of linear operators and applications to partial differential equations
- Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations
- The Morse-Smale property for a semilinear parabolic equation
- Morse decompositions for delay-differential equations
- Geometric theory of semilinear parabolic equations
- A permutation related to the dynamics of a scalar parabolic PDE
- Theory of functional differential equations. 2nd ed
- Realization of meander permutations by boundary value problems
- Diffeomorphisms of \(\mathbb{R}^ n\) with oscillatory Jacobians
- Order structures and the heat equation
- The global attractor of semilinear parabolic equations on \(S^1\)
- Dynamics in infinite dimensions. Appendix by Krzysztof P. Rybakowski.
- Sturm attractors for quasilinear parabolic equations
- Convergence in smooth strongly monotone flows defined by semilinear parabolic equations
- Heteroclinic orbits between rotating waves of semilinear parabolic equations on the circle
- Heteroclinic orbits of semilinear parabolic equations
- Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions
- The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay
- Sturm global attractors for \(S^1\)-equivariant parabolic equations
- A Lyapunov function for fully nonlinear parabolic equations in one spatial variable
- The zero number diminishing property under general boundary conditions
- Infinite-dimensional dynamical systems. An introduction to dissipative parabolic PDEs and the theory of global attractors
- Stability and convergence in strongly monotone dynamical systems.
- Jacobi matrices and transversality
- The zero set of a solution of a parabolic equation.
- Convergence for Strongly Order-Preserving Semiflows
- Orbit equivalence of global attractors of semilinear parabolic differential equations
- QUASI-LINEAR SECOND-ORDER PARABOLIC EQUATIONS WITH MANY INDEPENDENT VARIABLES
- Analytic semigroups and optimal regularity in parabolic problems
- Unique periodic orbits for delayed positive feedback and the global attractor
This page was built for publication: On the structure of the infinitesimal generators of scalar one-dimensional semigroups with discrete Lyapunov functionals
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6656124)