Low Mach number limit for the global large solutions to the 2D Navier-Stokes-Korteweg system in the critical \(\widehat{L^p}\) framework
From MaRDI portal
Publication:6657166
DOI10.1007/s00526-024-02857-8MaRDI QIDQ6657166
Publication date: 6 January 2025
Published in: Calculus of Variations and Partial Differential Equations (Search for Journal in Brave)
Singular perturbations in context of PDEs (35B25) Critical exponents in context of PDEs (35B33) Partial differential equations of mathematical physics and other areas of application (35Qxx) Compressible Navier-Stokes equations (76N06)
Cites Work
- The incompressible limit in \(L^p\) type critical spaces
- A Lagrangian approach for the compressible Navier-Stokes equations
- Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities
- Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces
- A global existence result for the compressible Navier--Stokes equations in the critical \(L ^{p }\) framework
- Theory of Besov spaces
- Convergence of the solutions of the compressible to the solutions of the incompressible Navier-Stokes equations
- Zero Mach number limit of the compressible Navier-Stokes-Korteweg equations
- On the thermomechanics of interstitial working
- The zero-Mach limit of compressible flows
- Sur la forme que prennent les équations du mouvement des fluides si l'on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l'hypothèse d'une variation continue de la densité.
- Global existence in critical spaces for compressible Navier-Stokes equations
- On Gagliardo-Nirenberg type inequalities in Fourier-Herz spaces
- From compressible to incompressible inhomogeneous flows in the case of large data
- Flows of non-Lipschitzian vector fields and Navier-Stokes equations
- The \(L^p\) energy methods and decay for the compressible Navier-Stokes equations with capillarity
- Global large solutions and incompressible limit for the compressible Navier-Stokes system with capillarity
- Global well-posedness for the incompressible Hall-magnetohydrodynamic system in critical Fourier-Besov spaces
- Ill-posedness for the compressible Navier-Stokes equations under barotropic condition in limiting Besov spaces
- Compressible Navier-Stokes system: large solutions and incompressible limit
- Global large solutions and incompressible limit for the compressible Navier-Stokes equations
- On the ill-posedness of the compressible Navier-Stokes equations in the critical Besov spaces
- LOCAL THEORY IN CRITICAL SPACES FOR COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE GASES
- Fourier Analysis and Nonlinear Partial Differential Equations
- Strong solution for Korteweg system in bmo−1(RN) with initial density in L∞
- Low Mach number limit of viscous compressible flows in the whole space
- Zero Mach number limit in critical spaces for compressible Navier–Stokes equations
- Zero Mach number limit for compressible flows with periodic boundary conditions
- Gevrey analyticity and decay for the compressible Navier-Stokes system with capillarity
- On the Low Mach Number Limit for Quantum Navier--Stokes Equations
- Low Mach number limit for viscous compressible flows
- Singular limits in thermodynamics of viscous fluids
- Existence of solutions for compressible fluid models of Korteweg type
- Low Mach number limit of the global solution to the compressible Navier-Stokes system for large data in the critical Besov space
This page was built for publication: Low Mach number limit for the global large solutions to the 2D Navier-Stokes-Korteweg system in the critical \(\widehat{L^p}\) framework