Power Brownian motion: an Ornstein-Uhlenbeck lookout
DOI10.1088/1751-8121/ad9126MaRDI QIDQ6658798
Publication date: 8 January 2025
Published in: Journal of Physics A: Mathematical and Theoretical (Search for Journal in Brave)
diffusionfractional Brownian motionself-similarityLangevin equationstationarityGauss-Markov processesLamperti transformscaled Brownian motionpower Brownian motion
Gaussian processes (60G15) Fractional processes, including fractional Brownian motion (60G22) Stationary stochastic processes (60G10) Brownian motion (60J65) Diffusion processes (60J60) Self-similar stochastic processes (60G18) Anomalous diffusion models (subdiffusion, superdiffusion, continuous-time random walks, etc.) (60K50)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Environmental variability and mean-reverting processes
- Selected aspects of fractional Brownian motion.
- Inference on the Hurst parameter and the variance of diffusions driven by fractional Brownian motion
- Spherical Ornstein-Uhlenbeck processes
- Anomalous is ubiquitous
- Fractional motions
- Relativistic Ornstein-Uhlenbeck process
- Sur la théorie du mouvement brownien.
- Zur kinetischen Theorie der \textit{Brown}schen Molekularbewegung und der Suspensionen.
- Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen.
- Survival models based on the Ornstein-Uhlenbeck process
- On the theory of the Brownian motion.
- New methods for simulation of fractional Brownian motion
- The persistence exponents of Gaussian random fields connected by the Lamperti transform
- Random diffusivity models for scaled Brownian motion
- Lamperti transformation -- cure for ergodicity breaking
- Lamperti transformation of scaled Brownian motion and related Langevin equations
- Numerical simulation of the Hurst index of solutions of fractional stochastic dynamical systems driven by fractional Brownian motion
- Stochastic calculus for fractional Brownian motion and related processes.
- Wavelet-based simulation of fractional Brownian motion revisited
- Lévy, Ornstein-Uhlenbeck, and subordination: spectral vs. jump description
- Stochastic Ornstein-Uhlenbeck capacitors
- The Brownian movement and stochastic equations
- Analytical survival analysis of the Ornstein-Uhlenbeck process
- Superstatistical approach of the anomalous exponent for scaled Brownian motion
- Ornstein-Uhlenbeck-Cauchy process.
- ON SPECTRAL SIMULATION OF FRACTIONAL BROWNIAN MOTION
- The misconception of mean-reversion
- Lectures on Gaussian Processes
- Generalized Ornstein-Uhlenbeck processes
- Quantifying the non-ergodicity of scaled Brownian motion
- Ornstein–Uhlenbeck Processes and Extensions
- The generalized Ornstein - Uhlenbeck process
- A first passage time distribution for a discrete version of the Ornstein–Uhlenbeck process
- Maximal inequalities for the Ornstein-Uhlenbeck process
- Self-similar processes in communications networks
- Semi-Stable Stochastic Processes
- Local time of an Ornstein–Uhlenbeck particle
- ɛ-Strong Simulation of Fractional Brownian Motion and Related Stochastic Differential Equations
- Anomalous diffusion: fractional Brownian motion vs fractional Ito motion
- Stable Lévy Processes via Lamperti-Type Representations
- Stochastic Processes and Applications
- Modeling Anomalous Diffusion
- Time-changed Ornstein–Uhlenbeck process
- Short and Long Memory Fractional Ornstein–Uhlenbeck α-Stable Processes
- Stochastic Calculus for Fractional Brownian Motion and Applications
- Markov-breaking and the emergence of long memory in Ornstein–Uhlenbeck systems
- Fractional Brownian Motions, Fractional Noises and Applications
- From diffusion to anomalous diffusion: A century after Einstein’s Brownian motion
- On stochastic differential equations
- Fractional Brownian motion in superharmonic potentials and non-Boltzmann stationary distributions
- Statistics of the first passage area functional for an Ornstein–Uhlenbeck process
- Scale Invariance
- Fractional Brownian motion approximation based on fractional integration of a white noise
- The random walk's guide to anomalous diffusion: A fractional dynamics approach
- Théorie de la spéculation.
- Differential-space.
- Mean first exit times of Ornstein–Uhlenbeck processes in high-dimensional spaces
- Rough volatility via the Lamperti transform
- Power Brownian motion
- Weird Brownian motion
- Parameter estimation of the fractional Ornstein-Uhlenbeck process based on quadratic variation
- Beta Brownian motion
- Fractional Brownian motion with random Hurst exponent: accelerating diffusion and persistence transitions
Related Items (1)
This page was built for publication: Power Brownian motion: an Ornstein-Uhlenbeck lookout