On estimates for the Besov norms of solutions to 3D subelliptic equations
From MaRDI portal
Publication:665906
DOI10.1134/S003744661105017XzbMath1242.35106OpenAlexW2117688600MaRDI QIDQ665906
Publication date: 7 March 2012
Published in: Siberian Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1134/s003744661105017x
A priori estimates in context of PDEs (35B45) Subelliptic equations (35H20) PDEs on Heisenberg groups, Lie groups, Carnot groups, etc. (35R03)
Cites Work
- Fundamental solutions and geometry of the sum of squares of vector fields
- Intégrales de Fourier quadratiques et calcul symbolique exact sur le groupe d'Heisenberg. (Quadratic Fourier integrals and exact symbolic calculus on the Heisenberg group)
- Asymptotics for some Green kernels on the Heisenberg group and the Martin boundary
- \(L^p\)-estimates for the wave equation on the Heisenberg group
- Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces
- Subelliptic estimates and function spaces on nilpotent Lie groups
- Extension of differentiable functions beyond the boundary of the domain on Carnot groups
- Trace theorems for vector fields
- Sobolev and Morrey estimates for non-smooth vector fields of step two
- The Poincaré inequality for vector fields satisfying Hörmander's condition
- Ahlfors type estimates for perimeter measures in Carnot-Carathéodory spaces
- Hypoelliptic second order differential equations
- Intertwining operators for semisimple groups
- Regularity for quasilinear second‐order subelliptic equations
- Pointwise Schauder estimates for second order linear equations in Carnot groups
- Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields
- Hardy Spaces on Homogeneous Groups. (MN-28), Volume 28
- Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces
- A fundamental solution for a subelliptic operator
- A Whitney extension theorem in \(L^p\) and Besov spaces
- Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item