The random Arnold conjecture: a new probabilistic Conley-Zehnder theory for symplectic maps
From MaRDI portal
Publication:6662842
DOI10.1007/s00220-024-05160-xMaRDI QIDQ6662842
Álvaro Pelayo, Fraydoun Rezakhanlou
Publication date: 14 January 2025
Published in: Communications in Mathematical Physics (Search for Journal in Brave)
Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems (37Jxx) Symplectic geometry, contact geometry (53Dxx) Differential topology (57Rxx)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Topological complexity of smooth random functions. École d'Été de Probabilités de Saint-Flour XXXIX-2009.
- Symplectic topology as the geometry of generating functions
- The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold
- Lagrangian embeddings and critical point theory
- Morse theory for Lagrangian intersections
- Witten's complex and infinite dimensional Morse theory
- Hydrodynamic limit for attractive particle systems on \(\mathbb{Z}{}^ d\)
- Floer homology and Arnold conjecture
- An extension of Poincaré's last geometric theorem.
- Proof of Poincaré's geometric theorem.
- Symplectic fixed points and holomorphic spheres
- On the Arnold conjecture for weakly monotone symplectic manifolds
- Symplectic twist maps. Global variational techniques
- Level Sets and Extrema of Random Processes and Fields
- Poincaré-Birkhoff Theorems in random dynamics
- Random Fields and Geometry
- Sur un théorème de géométrie.
This page was built for publication: The random Arnold conjecture: a new probabilistic Conley-Zehnder theory for symplectic maps