msolve. A library for solving polynomial systems
From MaRDI portal
Publication:6666519
DOI10.1145/3452143.3465545WikidataQ131128350 ScholiaQ131128350MaRDI QIDQ6666519
Jérémy Berthomieu, M. Safey El Din, Christian Eder
Publication date: 20 January 2025
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Computing real roots of real polynomials
- A criterion for detecting m-regularity
- On an installation of Buchberger's algorithm
- A new efficient algorithm for computing Gröbner bases \((F_4)\)
- Efficient computation of zero-dimensional Gröbner bases by change of ordering
- The Magma algebra system. I: The user language
- Modular algorithms for computing Gröbner bases.
- Efficient isolation of polynomial's real roots.
- Grundzüge einer arithmetischen Theorie der algebraischen Grössen. (Festschrift zu Herrn Ernst Eduard Kummers fünfzigjährigem Doctor-Jubiläum, 10 September 1881)
- Sparse FGLM algorithms
- On the theories of triangular sets
- Block-Krylov techniques in the context of sparse-FGLM algorithms
- Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. Translation from the German
- Bad Primes in Computational Algebraic Geometry
- Computing Real Roots of Real Polynomials ... and now For Real!
- An improved algorithmic construction of Gröbner-bases for polynomial ideals
- Fast solution of toeplitz systems of equations and computation of Padé approximants
- Ideals, Varieties, and Algorithms
- Quadratic interval refinement for real roots
- SLV
- FGb: A Library for Computing Gröbner Bases
- Fast Library for Number Theory: An Introduction
- Algorithms in real algebraic geometry
- A Gröbner free alternative for polynomial system solving
This page was built for publication: msolve. A library for solving polynomial systems