Sen operators and Lie algebras arising from Galois representations over \(p\)-adic varieties
From MaRDI portal
Publication:6667152
DOI10.1007/S00209-024-03676-5MaRDI QIDQ6667152
Publication date: 20 January 2025
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Could not fetch data.
Cites Work
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- On Lie algebras arising from \(p\)-adic representations in the imperfect residue field case
- Purity for Hodge-Tate representations
- A note on Sen's theory in the imperfect residue field case
- On variation of Hodge-Tate structures
- Continuous étale cohomology
- Continuous cohomology and \(p\)-adic Galois representations
- Formes différentielles et modules de Tate des variétés abéliennes sur les corps locaux. (Différential forms and Tate modules of abelian varieties over local fields)
- Relations between \(K_2\) and Galois cohomology
- \(p\)-adic étale cohomology and crystalline cohomology in the semi-stable reduction case
- Almost ring theory
- A generalization of Sen's theory.
- Notes on the local \(p\)-adic Simpson correspondence
- Perfectoid spaces
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Première partie). Rédigé avec la colloboration de J. Dieudonné
- \(p\)-adic analytic groups
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Troisième partie). Rédigé avec la colloboration de J. Dieudonné
- Zeros of polynomials over local fields. The Galois action
- Complexe cotangent et déformations. I. (The cotangent complex and deformations. I.)
- Seminar of algebraic geometry du Bois-Marie 1963--1964. Topos theory and étale cohomology of schemes (SGA 4). Vol. 1: Topos theory. Exp. I--IV
- Eliminating wild ramification
- Lie algebras of Galois groups arising from Hodge-Tate modules
- The logarithmic cotangent complex
- A \(p\)-adic Simpson correspondence
- Éléments de géométrie algébrique. III: Étude cohomologique des faisceaux cohérents. (Séconde partie). Rédigé avec la colloboration de J. Dieudonné
- The \(p\)-adic Simpson correspondence
- \(p\)-adic Hodge theory for rigid-analytic varieties
- -ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES – CORRIGENDUM
- p-Adic Lie Groups
- Determinants in Projective Modules
- Toric singularities: Log-blow-ups and global resolutions
- On locally analytic vectors of the completed cohomology of modular curves
- On the Hodge-Tage decomposition in the imperfect residue field case.
- Logarithmic structures of Fontaine-Illusie. II
- Toric Singularities
- Lectures on Logarithmic Algebraic Geometry
- Faltings extension and Hodge-Tate filtration for abelian varieties over p-adic local fields with imperfect residue fields
- Représentations p-adiques cristallines et de de Rham dans le cas relatif
- Cohomological Descent for Faltings Ringed Topos
- The Hodge-Tate spectral sequences
This page was built for publication: Sen operators and Lie algebras arising from Galois representations over \(p\)-adic varieties
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6667152)