Eigenvalue and gap estimates of isometric immersions for the Dirichlet-to-Neumann operator acting on \(p\)-forms
DOI10.1016/j.crma.2019.01.006zbMath1410.58014OpenAlexW2911857009WikidataQ128417102 ScholiaQ128417102MaRDI QIDQ666733
Publication date: 12 March 2019
Published in: Comptes Rendus. Mathématique. Académie des Sciences, Paris (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.crma.2019.01.006
differential formsfirst eigenvalueDirichlet-to-Neumann operatorSteklov operatorRiemannian manifold with boundary\(p\)-forms
Estimates of eigenvalues in context of PDEs (35P15) Spectral problems; spectral geometry; scattering theory on manifolds (58J50) Boundary value problems on manifolds (58J32)
Related Items (2)
Cites Work
- A Reilly formula and eigenvalue estimates for differential forms
- On the first eigenvalue of the Dirichlet-to-Neumann operator on forms
- Opérateur de courbure et laplacien des formes différentielles d'une variété riemannienne
- An isoperimetric inequality and the first Steklov eigenvalue
- A comparison theorem for the first non-zero Steklov eigenvalue
- Hodge decomposition. A method for solving boundary value problems
- On the spectrum of the Dirichlet-to-Neumann operator acting on forms of a Euclidean domain
- Eigenvalue and gap estimates for the Laplacian acting on 𝑝-forms
This page was built for publication: Eigenvalue and gap estimates of isometric immersions for the Dirichlet-to-Neumann operator acting on \(p\)-forms