Memory based approaches to one-dimensional nonlinear models
From MaRDI portal
Publication:6667716
DOI10.1007/s10440-024-00703-9MaRDI QIDQ6667716
Krzysztof Gdawiec, Amir Naseem, M. A. Rehman, Amanullah Soomro, Ridwanulahi Iyanda Abdulganiy, Sania Qureshi, Ioannis K. Argyros
Publication date: 20 January 2025
Published in: Acta Applicandae Mathematicae (Search for Journal in Brave)
Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral) (30C15) Numerical computation of solutions to single equations (65H05) Real polynomials: location of zeros (26C10) Numerical computation of roots of polynomial equations (65H04)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Advances in iterative methods for nonlinear equations
- Three-point methods with and without memory for solving nonlinear equations
- Multipoint methods for solving nonlinear equations: a survey
- Derivative free two-point methods with and without memory for solving nonlinear equations
- Geometric constructions of iterative functions to solve nonlinear equations
- Results on Newton methods. II: Perturbed Newton-like methods in generalized Banach spaces
- Stability and applicability of iterative methods with memory
- Some variants of Halley's method with memory and their applications for solving several chemical problems
- Some real-life applications of a newly constructed derivative free iterative scheme
- On a new family of high‐order iterative methods for the matrix pth root
- Ball convergence of a novel Newton-Traub composition for solving equations
- A ball comparison between extended modified Jarratt methods under the same set of conditions for solving equations and systems of equations
- A Unified Convergence Theory for a Class of Iterative Processes
- On some efficient derivative-free iterative methods with memory for solving systems of nonlinear equations
- Two‐step iterative methods for multiple roots and their applications for solving several physical and chemical problems
- From Halley to secant: redefining root finding with memory-based methods including convergence and stability
This page was built for publication: Memory based approaches to one-dimensional nonlinear models