The Thomsen-Bachmann correspondence in metric geometry. I
From MaRDI portal
Publication:669609
DOI10.1007/s00022-018-0465-8zbMath1412.51002OpenAlexW4243845446MaRDI QIDQ669609
Publication date: 15 March 2019
Published in: Journal of Geometry (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00022-018-0465-8
symmetric spacereflection groupabsolute geometrycalculus of reflectionsbi-interpretabilityBachmann groupCayley-Klein geometriessentential equivalenceThomsen-Bachmann correspondence
Foundations of classical theories (including reverse mathematics) (03B30) Absolute planes in metric geometry (51F05) Reflection groups, reflection geometries (51F15)
Related Items (2)
Cites Work
- An axiomatic foundation of Cayley-Klein geometries
- Non-euclidean geometries: the Cayley-Klein approach
- Ein gruppentheoretischer Aufbau der äquiformen Geometrie
- Model theory.
- On \(\mathsf{Q}\)
- Quine's conjecture on many-sorted logic
- Sophus Lie and Felix Klein: the Erlangen Program and its impact in mathematics and physics
- Glymour and Quine on theoretical equivalence
- Zur Begründung der Geometrie aus dem Spiegelungsbegriff
- Properties Preserved under Definitional Equivalence and Interpretations
- The Road to Modern Logic—An Interpretation
- Metric Geometries in an Axiomatic Perspective
- Philosophy and Model Theory
- On the calculus of relations
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: The Thomsen-Bachmann correspondence in metric geometry. I